
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Adjusting for Population Differences Using Applied Machine Learning Methods

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Applied Statistics

by

Lauren Giselle Parker Cappiello

September 2020

Dissertation Committee:

Dr. Xinping Cui, Chairperson
Dr. Daniel Jeske
Dr. Esra Kurum



Copyright by
Lauren Giselle Parker Cappiello

2020



The Dissertation of Lauren Giselle Parker Cappiello is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

This dissertation would not have been possible without the support of my advisor,

Dr. Zhiwei Zhang. For a year following his separation from UCR, he showed up for me

outside of his normal working hours via email and weekly Zoom meetings. Thank you also

to Dr. Xinping Cui, who stepped in as my dissertation chair, came to weekly Zoom meetings

even though this work is outside of her usual scope, and helped to ensure that everything

stayed on track. Thank you also to Drs. Esra Kurum, Dan Jeske, Brandon Brown, and

Ramdas Pai for your time on my dissertation proposal and to Drs. Kurum and Jeske for

agreeing to sit on my dissertation committee. Writing a dissertation is a frustrating process

at times, but I received so much valuable feedback that I know will make me a better

researcher moving forward. I would also like to acknowledge Drs. Changyu Shen, Neel

Butala, and Robert Yeh for their work on the application of these methods to data.

Thank you to Drs. James Flegal, Linda Penas, and Yelda Serin for the opportu-

nities outside of the scope of this dissertation. James mentored my undergraduate thesis

and convinced me to apply to PhD programs. Later, he would ask if I wanted to help with

the effort to put some of our introductory courses online. A year later, Linda let me teach

introductory statistics over the summer and offered me the next course in the sequence

for fall. Between the two of them, James and Linda helped me get the kind of hands-on

teaching and course development experience that most graduate students can only dream

of.

I remember sitting in James’ office as an undergraduate as he suggested that I

keep academia in mind while applying to graduate school. He may not remember, but I

iv



rolled my eyes at the idea that I might ever enjoy teaching and he suggested that I might

be surprised. Clearly, one of us was wrong. I am so thankful that I decided to stay at

UCR for my graduate program. It has been such a privilege to work so closely with other

graduate students and with such a diverse undergraduate student body. Thank you to the

graduate students who came to me for statistical consulting at GradQuant and to the many

undergraduate students I had the pleasure to work with, both in class and out. Finally,

thank you to Zhiwei, James, Linda, and Yelda for the letters of recommendation. Nothing

could have acted as a better motivator to finish this dissertation than a job offer that I am

incredibly excited about.

Thank to you my fellow Statistics graduate students and to the department as

a whole. We may not be the most social department on campus, but everyone has been

incredibly kind, collegial, and supportive. I want to acknowledge my fellow GSA officers -

Rebecca Kurtz-Garcia, Luke Klein, PoYao Niu, Samantha VanSchalkwyk, and Bibby Zhou

- for the hard work everyone put in to get this thing running. I’d also like to preemptively

acknowledge next year’s GSA officers in the hopes that they continue this work that I’m very

proud of. I would be remiss if I didn’t acknowledge Isaac Quintanilla, who studied for quals

with me, let me bounce research ideas off of him, and has great ideas about educational

equity.

Thank you to my family. To my Mom, for putting your trust in my ability to

do what’s right for me. To Carlyn, for occasionally bursting the academic bubble and for

always being there when I needed to vent about those particular quirks that only a sibling

would really understand. To my father, for making me the intensely career-driven person

v



that I am. To my in-laws, for pitching in on things like emergency visits to the veterinarian

and for dragging us away from work to go on the occasional much-needed vacation. And to

my wonderful extended family in Phoenix, who have enthusiastically welcomed us at family

holidays every year since we first moved to Riverside in 2013. We promise to start hosting

holidays soon.

Thank you to Daniel and Maggie Harmon, the family I chose. Y’all landed in my

life at a time when I really needed you. These have been the hardest years of my life by far

and getting myself up again and again was a team effort. I cannot overstate how thrilled I

am that I landed my dream job in the right city at the right moment.

Thank you especially to my husband, Marcus. Thank you for hanging in there.

Thank you for letting me shine. Thank you for supporting me when I was at my very lowest

and thought I would drop out of my program... and again when I decided not to. Thank

you for supporting my career aspirations despite their complicating your own. Thank you

for listening to me and for bearing with me when I was not at my best. I can’t believe I had

to finish this dissertation and we had to move 400 miles in the middle of a global pandemic,

but there’s nobody I’d rather do that with.

vi



This dissertation is dedicated to Daytona Hernandez (1991-2017), Marilyn Perry

(1925-2017), and Alan Wangsgard (1947-2018).

vii



ABSTRACT OF THE DISSERTATION

Adjusting for Population Differences Using Applied Machine Learning Methods

by

Lauren Giselle Parker Cappiello

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2020

Dr. Xinping Cui, Chairperson

Clinical treatment evaluation based on real-world data often requires adjusting for pop-

ulation differences in order to draw meaningful inference. This problem is considered in

the context of estimating mean outcomes and treatment effects in a well-defined target

population using clinical data from a study population that differs from but overlaps with

the target population in terms of patient characteristics. The current literature includes a

variety of statistical models which generally require the correct specification of at least one

parametric regression model. In this work, we propose the use of machine learning methods

to estimate nuisance functions, incorporating these methods into existing doubly robust

estimators. The resulting nonparametric estimators are
√
n-consistent, asymptotically nor-

mal, and asymptotically efficient under general conditions. Simulation results demonstrate

that the proposed methods perform well in reasonable settings. These methods are also

illustrated with a concrete cardiology example concerning standard of care for aortic steno-

sis. Finally, the ignorability assumption is examined through the development of global

sensitivity analysis methods for two of the commonly used parametric approaches.
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Chapter 1

Introduction

The randomized clinical trial (RCT), often considered the gold standard in causal

research, works as follows. The research begins with some population of interest that one

would like to draw inferences on. Based on practical and ethical guidelines, some constraints

are set on who is eligible for enrollment. Enrollment is further limited by patient self-

selection (consent) into the study. A random sample of patients is drawn from those who

are eligible and willing to participate. Medically relevant covariate data is taken at the start

of the study, before any treatment is administered. This covariate data may take the form

of prognostic variables or effect modifiers. Prognostic variables include any factors which

impact outcome independent of treatment, while effect modifiers are those factors which

impact an individual’s response to a particular treatment. Once the appropriate baseline

measurements are taken, participants are split up into treatment arms, or treatment groups,

for example treatment and placebo. The clinical outcome of interest is measured in each

patient after some preset period of time. After the study, the average treatment effect is
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calculated as the mean clinical outcome for the treated minus the mean clinical outcome

for the placebo.

To contextualize the RCT, suppose a researcher is interested in examining the

efficacy of some new implantable medical device in United States patients with chronic

heart disease. Because this requires surgical intervention, the study population may be

limited by eligibility criteria such as weight. Patients with good prognoses may be hesitant

to participate in a study where they will be assigned to a placebo or to a treatment with

unknown efficacy. There are also practical constraints to consider: the population served

by the clinic running the RCT may be unique in terms of race, socioeconomic status, or

any other medically relevant covariate.

Because the study population is distinct from the target population, the mean

outcome for each arm (and by extension the average treatment effect) is likely to differ

between this study population and the population of interest. That is, the population of

patients at this clinic who are willing to participate in, and are eligible for, the study may

differ from all US patients with chronic heart disease. In this case, it is desirable to adjust

for these population differences in order to draw inference about the population of interest.

This is the principle concern addressed in this work.

In technical terms, this research relates to the problem of adjusting for population

differences in mean outcomes and treatment effects in some well-defined target population,

using clinical data from a study population that overlaps with but is different from the

target population in terms of patient characteristics. These differences may arise from tem-

poral changes, regional differences, or patient self-selection in study enrollment or treatment
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assignment. This is relevant in several clinical research settings and is applied to a concrete

example in Section 2.3. The primary goal is to improve upon existing methods using an

applied machine learning approach.

1.1 Causal Inference

The problem considered here is a special type of causal inference, and we therefore

start by reviewing the general causal inference literature with focus on confounding adjust-

ment in observational studies. There is a smaller and more specific literature on adjusting

for population differences, which will be reviewed in the next section.

The so-called “ideal experiment” for inferring causality is one wherein each ex-

perimental unit is exposed to both the treatment and control conditions simultaneously.

That is, one might assign all experimental units to the treatment condition, measure the

outcomes, and then go back in time to assign all experimental units to the control condition.

Clearly this is not possible; an individual can only receive either treatment or control over

a single duration of time and so only one of the potential outcomes is ever observed. One

may therefore conceptualize causal inference problems as missing data problems, where all

of the unobserved outcomes are “missing”.

In the causal inference literature, causal questions are usually formulated in terms

of Rubin’s potential outcome notation [1]. This potential outcomes framework describes

the individual-level causal effect as the difference in outcomes for treatment and control

taken over some duration of time. Recall, however, that the individual-level difference in

outcomes is not directly available. In order to estimate the causal effect for an individual,
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Rubin recommends finding a similar “matching” individual based on relevant covariates

and controlling temporal and measurement differences as much as possible [1].

The basic causal inference framework expands these ideas to estimate treatment

effect at the population level. Ideal data for causal inference randomizes subjects to treat-

ment groups, restricts the study population to eliminate variation in the confounder, or

matches subjects between treatment groups. All of these approaches help to minimize or

eliminate the effects of confounders. When this type of data is not available or not reason-

able, for example when restricting the study population results in limited external validity,

focus must be turned to statistical techniques for confounding adjustment.

Treatment effect estimation usually requires the assumption that treatment as-

signment is strongly ignorable [2]. This lends itself to a regression model for potential

outcomes, conditioned on covariates. The causal effect of interest can then be estimated

using standard regression methods. The imputation approach is essentially to adjust for

confounders using an outcome regression model that relates some outcome of interest to

treatment. This is straightforward to implement and inference is efficient if the model is

correctly specified.

Another common approach is based on propensity scores for treatment assignment

[2]. Weighting methods require a model for the propensity scores, i.e., the conditional

probability of receiving some treatment given the confounders [2]. These estimated values

can then be used to match individuals in the treatment and control groups, stratify the

sample so that the groups are comparable, or weight each observation by the inverse of the

estimated propensity score [3, 4, 5].
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More recent research has focused on a doubly robust (DR) approach, locally effi-

cient estimators that use both an outcome regression and a propensity score model simul-

taneously. DR estimators were initially developed for missing data problems [6, 7] and were

later considered in causal inference [8, 9]. These are consistent and asymptotically normal

if either the outcome regression or propensity score model is correctly specified and attain

the nonparametric information bound when both models are correct [6, 10, 8, 9, 11]. An

extensive discussion of DR estimators may be found in van der Laan and Robins [10]. In

all of these methods, the outcome regression and propensity score functions are typically

estimated using parametric regression models. They are generally inconsistent if the models

are misspecified.

DR methods reduce the likelihood of bias by requiring that only one of the outcome

regression and propensity score models be correctly specified, but in many settings it is

likely that both models will be misspecified. In this case, DR estimators may perform

poorly [12]. The use of nonparametric regression to estimate the outcome regression and

propensity score models has been proposed in the setting with no more than two continuous

confounders, and this DR estimator attains the semiparametric information bound with no

parametric modeling assumptions [13]. However, this approach is often not applicable in

epidemiological studies due to the high dimensional nature of the data.

Other recent considerations include the following. Ridgeway et. al [14] discuss

estimating the propensity score using generalized boosted regression. Generalized boosted

regression adds together many simpler functions to estimate a smooth function for many

covariates simultaneously. Ridgeway et. al implement a regression tree for each of these
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smooth functions. Lee et. al [15] describe another method to improve propensity score

weighting using machine learning. In this setting, the authors demonstrate that methods

based on classification and regression trees may be useful for propensity score weighting

when logistic regression models are misspecified. Neugebauer et. al [16] describes yet

another machine learning approach to propensity score estimation, this time using a super

learning approach. Although all of these approaches show promising results in simulation

studies, their theoretical properties are not fully established. Notably, it is not clear whether

these estimators are
√
n-consistent or asymptotically normal.

1.2 Adjusting for Population Differences

We now turn to existing methods that adjust for population differences. There are

two primary questions to address in adjusting for population differences. First, we may be

interested in estimating mean outcomes. The mean outcome adjustment problem involves,

essentially, calibrating some mean treatment outcome from one population to another. This

generally involves adjusting for differentially distributed prognostic variables, baseline char-

acteristics that impact health outcomes. In contrast, treatment effect adjustment involves

adjusting a treatment effect for population differences. This generally means calibrating a

treatment effect found in a RCT to a different but overlapping target population. Mean out-

come adjustment and treatment effect adjustment are similar but require slightly different

approaches and assumptions.

For both the mean outcome and treatment effect adjustment problems, a variety

of methods are available in the economics literature [17, 13, 18, 19]. The current biostatis-
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tics literature includes outcome regression methods [20, 21, 22, 23], propensity score-based

weighting, stratification, and matching methods [20, 24, 25, 26], and doubly robust methods

that use both propensity score-based and outcome regression methods together [20, 27]. In

adjusting for population differences, the propensity score may be conceptualized as the con-

ditional probability (given baseline covariates) that a subject in the available data belongs

to the target population. A more precise, contextual definition will be given in the next

chapter.

The existing methods that adjust for population differences are typically applied

in a parametric fashion. Parametric models are by nature approximations and model mis-

specification can result in significant bias. Healthcare data are also often high-dimensional

with many recorded covariates and there is often insufficient knowledge to restrict atten-

tion to a small number of variables, forcing researchers to use data-driven variable selection

techniques (e.g., LASSO). Healthcare data may also be highly complex in terms of how

the many variables relate to one another. Thus, standard parametric models may be in-

adequate in describing these relationships and more flexible semiparametric [28, 29] and

machine learning [30] approaches may be preferable. There is significant variety in the

available semiparametric and machine learning methods and the appropriateness of each

will vary depending on application. That said, cross-validation-based approaches are avail-

able to select the best performing model or method for a given dataset. Methods also exist

for combining many candidate methods into an ensemble learner, such as the super learner

[31, 11].
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1.2.1 Indirect Comparison with a Historical Control

In the indirect comparison setting, we are interested in the average treatment

effect where an experimental treatment is compared to a control treatment, which may be

placebo, no treatment, or current standard of care. Under the RCT setting, this is easily

estimated as the difference in mean observed outcomes for two treatment arms. However,

RCTs may take place in a setting that does not translate well to real world applications

and are subject to a variety of ethical and practical constraints. For example, it may be

unethical to randomize treatment if a new approach is especially promising or there is no

current standard of care for some life-threatening illness. In this setting, a RCT may be

unavailable and a one-armed trial may be conducted instead. It may also be the case that a

RCT is available, but comparing the treatment of interest to a treatment standard instead

of to a placebo (where the placebo is the desired control).

It would be simple to estimate the average treatment effect if a random sample of

the clinical outcome for the target population were available, but in the indirect comparison

problem, it is assumed that this is not the case and that the average treatment effect must

be estimated using other sources. A one-armed trial identifies the mean clinical outcome

among the treated in our new population and the historical control data allows estimation

of the mean clinical outcome for the control. In this setting, it is difficult to assume that

the mean clinical outcome for the control will be the same for both the historical and target

populations. We therefore focus on estimating the mean clinical outcome for the control in

the target population using covariate data from the target population along with outcome

and covariate data from a historical study of the control treatment. The essence of this
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problem is to adjust for population differences in estimating the mean outcome for the

control.

1.2.2 Treatment Effect Adjustment

The ideal clinical trials setting is one that is randomized and concurrently con-

trolled. Randomizing patients to treatments prevents treatment groups from being system-

atically different in terms of their baseline characteristics, which suggests that any system-

atic differences in outcomes can be directly attributed to different treatments. This is the

primary advantage of a RCT, i.e., the internal validity, or the ease of comparison between

different treatment groups, is high. However, RCTs are also criticized for a lack of external

validity, or generalizability to a greater population (specifically the intended use popula-

tion). This is because RCTs often involve strict inclusion/exclusion criteria that may reduce

the study population by excluding individuals. Some individuals may also be unwilling to

participate without knowing - or choosing - their treatment and will therefore be excluded

in a RCT setting. This reduced population may be meaningfully different from the target

population.

Extending the treatment effect to the target population is where treatment effect

adjustment comes in. This generally means calibrating a treatment effect found in an

RCT to a different but overlapping target population. Because RCTs are randomized, the

only necessary adjustments are to the differentially distributed effect modifiers (between

the two populations). That said, prognostic variables may occasionally be included for

increased precision [27]. This estimation is closely related to estimation of mean outcomes,

but involves some additional considerations. Mean outcomes estimation methods typically
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assume that the same relationship holds across populations for the conditional mean of

the potential outcomes (given the covariates), referred to as treatment-specific conditional

constancy. Calibrating a treatment effect involving two treatments could be accomplished

by applying a mean outcome adjustment to one or both treatments, but the assumption

that all differentially distributed prognostic variables were measured is likely to be too strict

in practice.

In regulatory settings, the efficacy of a new treatment is typically defined in com-

parison to a placebo. However, it is often impractical to conduct a placebo-controlled study

when an effective treatment is known to exist and delaying treatment has irreversible conse-

quences. As a partial solution, non-inferiority trials that compare a new treatment with an

active control (e.g., standard of care) have become increasing common. A non-inferiority

trial provides direct evidence on the effect of the new treatment versus the active con-

trol. However, for regulatory and scientific purposes, it is still important to understand

the effect of the new treatment versus placebo. Answering this question requires additional

information about the effect of the active control versus placebo.

The additional information required is typically available from a previous study

comparing the active control with placebo. However, due to possible differences in patient

characteristics, the control effect estimate from the historical study may not be directly

applicable to the current non-inferiority study. If this is a concern, we should adjust for

population differences in estimating the effect of the active control versus placebo.
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1.3 Evidence Synthesis

Given that RCTs are often infeasible or lacking in external validity, a clinician

may occasionally want to base inferences on some alternative data sources. Alternative

data sources may include observational studies, historical control data, patient registries,

insurance claims, and electronic health records. The lack of randomization in these sources

means that there is a reduced level of internal validity than with RCTs. However, they

may provide increased external validity and may be cheaper and less time consuming to

implement. Observational studies may be a practical alternative to RCTs, especially when

RCTs are limited by ethical constraints. Historical control data can provide valuable in-

formation when a concurrent control is not available (or not ethical); patient registries and

insurance records may be more representative of a target population than a RCT; and

electronic health records may contain significant amounts of information that is important

to real world clinical practice. Many of the alternate data sources of interest include non-

randomized data, but we typically assume that confounders are measured and so can be

conditioned on to satisfy the assumption of strongly ignorable treatment assignment [2].

When clinical trial data are available from multiple sources, it is unlikely that

any one source will be optimal in all aspects, i.e., in internal and external validity, data

quality and quantity, etc. It is therefore appealing to combine multiple data sources into

one treatment evaluation in order to combine their strengths. Even in the case where one

source is preferable over all others, utilizing multiple sources remains advisable in order

to improve statistical efficiency. The main difficulty with different data sources, and the

focus of this work, is that patient populations may be dissimilar with respect to relevant
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covariates. If sources are sufficiently different from the population of interest, they may

require some statistical adjustments. This is a major challenge in adjusting for population

differences.

1.4 Example

These challenges may be illustrated by a real example in cardiology, where we may

go into more depth than in the toy example given previously. This real example concerns

aortic stenosis, a narrowing of the aortic valve opening. Aortic stenosis is most common

among elderly populations and, after onset of symptoms, prognosis is poor. Until relatively

recently, the standard of care was surgical aortic valve replacement (SAVR). This is a highly

invasive procedure with substantial risk of morbidity or death, especially among patients

with multiple comorbidities. A newer, less invasive approach is transcatheter aortic valve

replacement (TAVR), designed to reduce the risk of death among patients for whom surgical

interventions are particularly risky.

A RCT (CoreValve) was conducted to compare SAVR and TAVR in patients with

severe aortic stenosis who were at increased surgical risk [32]. This trial found an absolute

reduction of 4.9% (95% CI: 0.4 to 10.2%) for TAVR versus SAVR in the rate of all-cause

mortality at one year after treatment. Since then, TAVR has been included in major societal

guidelines [33] as first-line therapy and has been widely implemented in clinical practice.

However, this direct generalization of the trial results to the target population of high-

risk patients with severe aortic stenosis may be problematic due to distributions of patient

characteristics at baseline [34, 35].
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Given that the primary population affected by aortic stenosis is elderly, a rea-

sonable description of this target population is available from the Medicare Provider and

Review (MedPAR) database of the U.S. Centers for Medicare and Medicaid Services. This

database contains baseline information for all patients with aortic valve disease who receive

TAVR through Medicare. Here, we are interested in using the MedPAR database together

with the clinical trial data in order to estimate mean outcomes (one-year mortality rates)

of TAVR and SAVR as well as their difference in the target population.
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Chapter 2

Adjusting for Population

Differences

2.1 Methodology

2.1.1 Adjusting a Mean Outcome

Adjusting a mean outcome for population differences is done individually for each

treatment, so treatment is considered to be fixed and is suppressed from the notation in this

setting. For the target population, let Y ∗ be the outcome variable of interest and X∗ be the

associated covariates in the target population. Let (X, Y ) be the counterparts of (X∗, Y ∗) in

the study population. The available data consist of {Oi = (Xi, Yi), i = 1, . . . , n}, a random

sample of O = (X, Y ), and {O∗i = X∗i , i = 1, . . . , n∗}, a random sample of O∗ = X∗.
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To identify and estimate µ∗ = E(Y ∗) from this observed data, we make the fol-

lowing assumptions about how the populations relate to one another: first, that

X ∗ = X (2.1)

where X (X ∗) denotes the support of X (X∗). That is, all patients in the target population

are represented in the study population. Technically, we only need X ∗ ⊂ X , but X\X ∗ is

not informative of µ∗ without strong parametric assumptions and can be quite misleading,

so we discard the use of this part of X . Second, we assume

E(Y ∗|X∗ = x) = E(Y |X = x) =: m(x), x ∈ X ∗ (2.2)

where m is known as the outcome regression function. This assumption suggests that the

covariates are sufficient in explaining differences between µ∗ and µ and implies that

µ∗ = E[E(Y ∗|X∗)] = E[m(X∗)]. (2.3)

Assumption 2.1 ensures that m(x), x ∈ X ∗, is identifiable in this setting.

Equation 2.3 motivates an imputation (IM) estimator:

µ̂∗IM = n∗−1
n∗∑
i=1

m̂(X∗i )

where m̂ is some generic estimate of m based on {(Xi, Yi), i = 1, . . . , n}. This is known in
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the missing data literature as an imputation estimator because Y ∗ (unobserved) is “im-

puted” by an estimate of E(Y ∗|X∗).

We may also write

µ∗ =

∫
m(x)f∗(x)dν(x) =

∫
m(x)

f∗(x)

f(x)
f(x)dν(x) = E

[
Y f∗(X)

f(X)

]
, (2.4)

where f and f∗ are the densities of X and X∗, respectively, with respect to some common

measure ν. Assumption 2.1 further implies that the ratio r(x) = f∗(x)/f(x) is well-defined

and finite for all x ∈ X . Equation 2.4, then, motivates the following weighting (WT)

estimator:

µ̂∗WT = n−1
n∑
i=1

Yir̂(Xi)

where r̂ is some generic estimate of r.

Remark 1 This weighting method based on a density ratio turns out to be closely related to

the propensity score weighting estimator used in observational causal inference. By Bayes’

Law, the standard propensity score used in observational causal inference may be written as

e(x) = P (T = 1|X = x) =
P (T = 1)f1(x)

P (T = 1)f1(x) + P (T = 0)f0(x)

where f0 (f1) denotes the conditional density of X given T = 0 (T = 1). In the present

setting, the quantity P (T = 1|X = x) may not be interpretable as T is not necessarily a

random variable.
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Using a similar Bayes’-type identity based on Z, the population for a subject (1 if

target, 0 otherwise), we can define a different propensity score

p(x) = P (Z = 1|Xo = x) =
P (Z = 1)f∗(x)

P (Z = 1)f∗(x) + P (Z = 0)f(x)
, (2.5)

where Xo is either X∗ (for Z = 1) or X (for Z = 0). In this propensity score setting, p(x)

is the probability of an individual to be in the target population (given the covariates). For

estimation of r(x), we can rewrite Equation 2.5 as

logit[p(x)] = log[r(x)] + log(n∗/n), (2.6)

A log-linear model for r(x), then, corresponds to a logistic regression model for p(x), the

propensity score function. Equation 2.6 can then be used to estimate r as

r̂(x) = exp{logit[p̂(x)]− log(n∗/n)} (2.7)

where p̂(x) is a generic binary regression estimate of the propensity score function p(x).

Remark 2 In a typical observational study, the goal is to compare two groups of people,

e.g., 1 (treated) and 0 (control). The goal is to estimate the mean outcome for each treatment

and the difference between them, with each quantity applied to the whole study population.

Consider for example treatment 1. Here, we observe its outcome only for subjects in group

1, but we want to estimate the mean outcome for the entire study population. We accomplish

this by weighting the subjects in group 1.
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In this case, the weight is based on the propensity score as described in Remark 1.

Subjects with a higher propensity score are represented more heavily in group 1 than those

with a lower propensity score. To correct for uneven representation, we might use 1/e(x)

to make group 1 representative of the entire population, essentially moving each subject in

group 1 into the full cohort. We can also make estimates in the control population, using

for example [1− e(x)]/e(x) to “move” a subject into group 0.

In our setting, the target and study cohorts can be thought of as two groups in an

observational study. When we estimate mean outcomes (and treatment effect) in the target

population, we want to take what we observe for the study cohort and correct it for the target

cohort. Thus we want to “move” a subject from one group to another and will accomplish

this by weighting each subject in the study cohort by [1− p(x)]/p(x), where now we use the

propensity score described in Equation 2.5. In fact, notice than when n∗ = n, we weight by

exactly [1− p(x)]/p(x).

Both of these estimators depend on correct model specification for consistency.

In practice, this is often difficult to achieve and it would be desirable to have a doubly

robust (DR) estimator. This arises naturally as, simultaneously, an augmented imputation

estimator and as an augmented weighting estimator. A doubly robust estimator of µ∗

(DR0), motivated by semiparametric theory [36, 37], is then given by

µ̂∗DR0 = µ̂∗IM +
1

n

n∑
i=1

[Yi − m̂(Xi)]r̂(Xi) (2.8)

= µ̂∗WT −
1

n

n∑
i=1

m̂(Xi)r̂(Xi) +
1

n∗

n∗∑
i=1

m̂(X∗i ). (2.9)
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Under conditions justifying the use of a uniform law of large numbers [38], when the outcome

regression model is correct the augmentation term n−1
∑n

i=1[Yi−m̂(Xi)]r̂(Xi) is asymptoti-

cally equivalent to n−1
∑n

i=1[Yi−m(Xi)]r(Xi), which tends to E{[Yi−m(Xi)]r(Xi)}, equal

to 0 under Assumption 2.2 by a conditioning argument. Thus, the augmented imputation

estimator (2.8) is consistent under Assumption 2.2. In a similar vein, when the propen-

sity score model is correctly specified the augmentation term n−1
∑n

i=1 m̂(Xi)r̂(Xi) +

n∗−1
∑n∗

i=1 m̂(X∗i ) tends to E[m(X∗)]−E[m(X)r(X)], equal to 0 under r(x) = f∗(x)/f(x).

Then the augmented weighting estimator (2.9) is consistent if r(X) is correctly specified.

Since the two augmented estimators are the same, the doubly robust property follows. This

method, based on parametric models, was studied by Zhang [20].

These three methods have been considered and compared by Zhang [20], Shinozaki

and Matsyama [39], and possibly others. In these considerations, parametric models are

used to estimate m and r. If m̂ is consistent for m, then µ̂∗IM is consistent for µ∗ and the

difference between µ̂∗DR0 and µ̂∗IM is asymptotically negligible because m is defined to be a

conditional mean. Analogously, if r̂ is consistent for r, then µ̂∗WT is consistent for µ∗ and

the difference between µ̂∗DR0 and µ̂∗WT is asymptotically negligible because r is a density

ratio. However, if the model for m is incorrect, µ̂∗IM will not be consistent. Similarly, if the

model for r is incorrect, µ̂∗WT will not be consistent. At least one of these two models must

be correct for the estimator µ̂∗DR0 to be consistent.

For additional robustness, we consider estimating m and r using statistical ma-

chine learning methods [30]. In this context, machine learning refers to any method (whether

based on a parametric, semiparametric, or nonparametric model, or no model at all) to esti-
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mate a regression function under some specified loss function. Some possible loss functions

include squared error loss, [Y −m(X)]2, for estimating m and the minus-log-likelihood loss,

−Z log[p(Xo)] − (1 − Z) log[1 − p(Xo)], for estimating p and by extension r. We assume

that there exist limit functions m∞ and r∞ such that, with probability 1, m̂(x)→ m∞(x)

and r̂(x) → r∞(x) for all x ∈ X. Under regularity conditions, we would expect that µ̂∗IM

be consistent for µ∗ if m∞(x) = m and that µ̂∗WT be consistent for µ∗ if r∞ = r. However,

unless m̂ and r̂ are based on correct parametric models, we cannot expect µ̂∗IM and µ̂∗WT

to be
√
n-consistent and asymptotically normal. This is a serious limitation that limits the

use of these estimators when m̂ and r̂ are obtained with machine learning methods.

It is worth noting that µ̂∗DR0 does not have the same limitation when used with

machine learning methods. This machine learning approach to the DR estimators will be

referred to as DR1. In this case, µ̂∗DR1 is consistent for µ∗ if m∞(x) = m or r∞(x) = r (or

both). For
√
n-consistency and asymptotic normality, we assume

m∞ = m, r∞ = r, and ||m̂−m||2||r̂ − r||2 = op(n
−1/2), (2.10)

where ||.||2 denotes the L2-norm with respect to the distribution of X, that is,

||g||22 = E[g(X)2] =

∫
g(x)2f(x)dν(x)

for any function g. Under Assumptions 2.1, 2.2, and 2.10 as well as some regularity condi-

tions (including a Donsker condition), we show in Appendix A that
√
n(µ̂∗DR1−µ∗) converges
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to a normal distribution with mean 0 and variance

var{[Y −m(X)]r(X)}+ λ−1var[m(X∗)]

where λ is the limit of n∗/n. This is the nonparametric variance bound for estimating µ∗

[13]. Thus, µ̂∗DR1 is asymptotically efficient in the nonparametric sense.

The rate condition in 2.10 can be satisfied in a variety of ways. For example,

if one of ||m̂ − m||2 and ||r̂ − r||2 is Op(n
−1/2) (e.g., under a correct parametric model),

then the other only needs to be op(1), i.e., consistent. Alternately, condition 2.10 holds if

both are op(n
−1/4). These can be achieved by semiparametric and nonparametric methods

that assume smoothness, sparsity, or other structural constraints [40, 41, 42, 43, 44]. For

instance, the neural network [40] and the highly adaptive lasso [41, 42] achieve the op(n
1/4)

rate under mild smoothness conditions.

The efficiency and
√
n-consistency of µ̂∗DR1 depend on a Donsker condition (see

Appendix A for details), which imposes a limitation on the class of algorithms that can be

included in the super learner. The Donkser condition requires, essentially, that estimates

of m and r not be too complicated (i.e., should belong to classes of functions that are not

too large). This requirement is easy to satisfy for smooth, monotone functions, but it is

unclear whether it is satisfied for more sophisticated machine learning algorithms such as

random forests or neural networks.

Cross fitting, or sample splitting, has been suggested as a way to remove the

Donsker condition while retaining efficiency and
√
n-consistency [45, 46, 47]. Recall that

the available data are {Oi = (Xi, Yi), i = 1, . . . , n}, a random sample of O = (X, Y ),
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and {O∗i = X∗i , i = 1, . . . , n}, a random sample of O∗ = X∗. Here, the entire sample

{Oi, i = 1, . . . , n}∪{O∗i , i = 1, . . . , n∗} is partitioned randomly into L roughly equally-sized

subsamples. Let Si and S∗i be independent and uniformly distributed on {1, . . . , L}. Then

the lth subsample consists of {Oi : Si = l} ∪ {O∗i , S∗i = l}. For every l ∈ {1, . . . , L},

temporarily exclude the lth subsample and obtain m̂(−l) and r̂(−l) from the rest of the

sample using the same methods for obtaining m̂ and r̂. We can then estimate µ∗ using

µ̂∗DR2 =
1

n

n∗∑
i=1

m̂(−S∗i )(X∗i ) +
1

n

n∑
i=1

[Yi − m̂(−Si)(Xi)]r̂
(−Si)(Xi)

where DR2 denotes the DR estimator based on sample splitting. As with µ̂∗DR1, µ̂
∗
DR2 is

consistent for µ∗ if m∞ = m or r∞ = r or both. Appendix A further shows that µ̂∗DR2

is
√
n-consistent, asymptotically normal, and asymptotically efficient under Assumptions

2.1, 2.2, and 2.10 as well as some regularity conditions, which do not include a Donsker

condition.

There are many machine learning methods available [30] and it may be difficult to

choose the best-performing method for a given application without knowing the true data

generation mechanism. We may be interested in comparing a number of varied methods

such as generalized linear models, neural networks, random forests, recursive partitioning,

multi-adaptive regression splines, and many other potential candidates both parametric and

semi-/non-parametric. Fortunately, it is possible to consider all of these methods together

using the principle of super learning [31]. This involves the use of cross-validation to assign

weights to each method in a library of candidate methods in order to compute a single

learner. The super learning approach has been shown to perform at least as well as any
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of the given candidate learners [48, 49, 50]. For a more detailed discussion of the super

learner, see Appendix B.

2.1.2 Adjusting a Treatment Effect

Let Y ∗(t) be the potential outcome for treatment t ∈ {0, 1} and X∗ a vector of

baseline covariates in the target population. Here, the parameter of interest is the mean

difference, δ∗ = µ∗1 − µ∗0, where µ∗t = E{Y ∗(t)}, t = 0, 1. Let Y (t), t = 0, 1 and X be

the study population counterparts of Y ∗(t), t = 0, 1 and X∗. Assume that the study

is a RCT with T a randomized treatment and Y = Y (T ) the corresponding outcome.

The data then consist of {(Xi, Ti, Yi), i = 1, . . . , n} a random sample from (X, T, Y ) and

{X∗i , i = 1, . . . , n∗} a random sample from X∗.

It is possible to estimate each mean µ∗t separately using one of the methods de-

scribed in the previous section, but it may also be of interest to estimate δ∗ directly. Mean

outcome adjustments typically assume treatment-specific conditional constancy, i.e., that

the same relationship holds across populations for the conditional mean of the potential

outcomes given some set of measured covariates. In practice, this may be too strict of an

assumption. To identify δ∗ in this context, we assume that Assumption 2.1 holds and that

E[Y ∗(1)− Y ∗(0)|X∗ = x] = E(Y |T = 1,X = x)− E(Y |T = 0,X = x) =: d(x), x ∈ X ,

(2.11)

i.e., that the covariates are sufficient in explaining any differences between δ∗ and δ, the

counterpart in the study population. Comparing Assumption 2.11 with Assumption 2.2,

we note that the latter requires adjusting for prognostic variables while the former requires
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adjusting for effect modifiers only. This latter assumption may be more plausible in certain

settings, for example where effect modifiers are more completely measured than prognostic

variables.

Under these assumptions, we may write

δ∗ = E{E[Y ∗(1)− Y ∗(0)|X∗]} = E[d(X∗)]

and obtain an imputation (IM) estimator

δ̂∗IM = n∗−1
n∗∑
i=1

d̂(X∗i )

where d̂ is a generic estimate of d based on {(Xi, Ti, Yi), i = 1, . . . , n}. Randomization

implies that

E[Y (t)|X] = E[Y (t)|T = t,X] = E[Y |T = t,X], t = 0, 1,

which suggests that d(x) may be estimated as d̂(x) = m̂1(x) − m̂0(x) where m̂t(x) is an

estimate of the treatment-specific outcome regression function m̂t(x) = E(Y |T = t,X = x).

Alternatively, noting that d(X) = E(D|X) where

D =
TY

π
− (1− T )Y

1− π

and π = P(T = 1) known in a RCT setting, d may then be estimated by regressing Di

on Xi, i = 1, . . . , n. In this setting, Di can be regarded as an error-prone but unbiased
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estimate of d(Xi) for each individual subject. A parametric model for d is known as a

structural nested model and can be estimated accordingly [51]. A different representation

of δ∗ is given by

δ∗ =

∫
d(x)f∗(x)dν(x) =

∫
d(x)r(x)f(x)dν(x) = E

{[
TY

π
− (1− T )Y

1− π

]
r(X)

}
,

where again r(x) = f∗(x)/f(x). This motivates a weighting estimator of δ∗:

δ̂∗WT =
1

n

n∑
i=1

Dir̂(Xi)

=
1

n

n∑
i=1

Yir̂(Xi)

(
Ti
π
− 1− Ti

1− π

)
.

Finally, we may again use semiparametric theory to obtain a DR estimator

δ̂∗DR0 = δ̂∗IM +
1

n

n∑
i=1

r̂(Xi)
[
Di − d̂(Xi)− (Ti − π)ĥ(Xi)

]
= δ̂∗WT −

1

n

n∑
i=1

r̂(Xi)
[
d̂(Xi) + (Ti − π)ĥ(Xi)

]
+

1

n∗

n∑
i=1

d̂(X∗i )

where h is some generic estimate of

h(x) =
m1(x)

π
+
m0(x)

1− π
= E

(
TY

π2
+

(1− T )Y

(1− π)2

∣∣∣∣X = x

)
.

An estimate of h(x), ĥ(x), may be obtained as π−1m̂1(x) + (1−π)−1m̂0(x) or by regressing

Hi = [π−2Ti + (1 − π)−2(1 − Ti)]Yi on Xi, i = 1, . . . , n. This method based on parametric

models was studied by Zhang, et al. [27].

25



These approaches have been compared by Zhang [22], Nie et al. [26], Zhang et. al

[27], and possibly others. As with the mean outcome estimation methods, parametric models

are used to estimate the nuisance functions, in this case d, r, and h, and the consistency of

the resulting estimates depends on the correct specification of the relevant model(s). Here,

the model for d must be correct for δ̂∗IM to be consistent, the model for r must be correct

for δ̂∗WT to be consistent, and at least one of these two models must be correct for δ̂∗DR0 to

be consistent.

Since the misspecification of parametric models is so likely, we now consider the use

of machine learning methods in estimating nuisance functions for the purpose of estimating

δ∗. As noted in the previous section, we focus on DR methods because the imputation and

weighting methods fail to achieve
√
n-consistency when nuisance functions are estimated

using a machine learning approach. The DR estimator of δ∗ requires estimating three

different nuisance functions: d, r, and h. The initial machine learning approach to the DR

estimator will be referred to as DR1. It is assumed that there exist limit functions d∞, r∞,

and h∞ such that d̂(x) → d∞(x), r̂(x) → r∞(x), and ĥ(x) → h∞(x) for all x ∈ X , with

probability 1. Here, δ̂∗DR1 is consistent for δ∗ if d∞ = d, r∞ = r, or both (regardless of h∞).

For
√
n-consistency and asymptotic normality, we assume that

d∞ = d, r∞ = r, and ||d̂− d||2||r̂ − r||2 = op(n
−1/2). (2.12)

Under Assumptions 2.1, 2.11, and 2.12, as well as regularity conditions (including

a Donsker condition), we show in Appendix A that
√
n(δ̂∗DR1 − δ∗) converges to a normal
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distribution with mean 0 and variance

var{r(X)[D − d(X)− (T − π)h∞(X)]}+ λ−1var[d(X∗)] (2.13)

where again λ is the limit of n∗/n. When h∞ = h, this asymptotic variance becomes the

nonparametric variance bound for estimating δ∗ (see Zhang et al., Web Appendix A [27]).

Then δ̂∗DR1 is asymptotically efficient in the nonparametric sense.

Referring back to the previous section, we again obtain our nuisance function

estimates, in this case (d̂, r̂, ĥ), using the super learner methodology with an adequate

algorithm library. A library created for binary regression is used to obtain p̂ by regressing

Zi onXo
i . As in Section 2.1.1, Z is the population for a subject andXo is eitherX∗ (Z = 1)

or X (Z = 0). This can then be used to estimate r̂ using equation 2.7. For (d̂, ĥ), consider

two slightly different approaches. In the first approach, d̂ and ĥ are obtained directly by

regressing Di and Hi, respectively, on Xi using the super learner approach. In the second

approach, the super learner methodology is used to obtain m̂t separately for each t ∈ {0, 1}

by regressing Yi on Xi among subjects with Ti = t. We then obtain d̂ and ĥ indirectly by

d̂(x) = m̂1(x)− m̂0(x),

ĥ(x) = π−1m̂1(x) + (1− π)−1m̂0(x).

As in the mean outcome estimation setting, the Donsker condition for δ̂∗DR1 may be

removed via sample splitting. Let the whole sample {Oi, i = 1, . . . , n} ∪ {O∗i , i = 1, . . . , n∗}

be partitioned as in the previous section. For each l ∈ {1, . . . , L},the lth subsample is
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excluded and we obtain (d̂(−l), r̂(−l), ĥ(−l)) from the remainder of the sample using the same

methods as for obtaining (d̂, r̂, ĥ). Then δ∗ is estimated as

δ∗DR2 =
1

n∗

n∗∑
i=1

d̂(−S
∗
i )(X∗i ) +

1

n

n∑
i=1

r̂(−Si)(Xi)
[
Di − d̂(−Si)(Xi)− (Ti − π)ĥ(−Si)(Xi)

]
.

As with δ̂∗DR1, δ̂
∗
DR2 is consistent for δ∗ if d∞ = d, r∞ = r, or both (regardless of h∞). In

Appendix A, we show that δ̂∗DR2 is
√
n-consistent, asymptotically normal, and asymptoti-

cally equivalent to δ̂∗DR0 under Assumptions 2.1, 2.11, and 2.12 as well as some regularity

conditions, which not do not include a Donsker condition. If also h∞ = h, then δ̂∗DR2 is also

asymptotically efficient in the nonparametric sense.

2.2 Simulation Studies

We now report two simulation studies. The first uses a simple setting with three

continuous covariates and a binary outcome. The second is a data-driven simulation study

based on the RCTs in the BENCHMRK and SAILING studies [52, 53]. The imputation,

weighting, and DR0 methods are compared using this data in Zhang, Nie, Soon, and Hu

(2016) . Results for two other basic simulation studies may be found in Appendix F.

Methods are compared in terms of empirical bias, standard deviation (SD), root mean

squared error (RMSE), and coverage probability (CP). Standard deviation is based on either

bootstrap samples (parametric methods) or the estimated influence function (nonparametric

methods). RMSE is based on bias and the true standard deviation of the estimates across

1000 samples.
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2.2.1 A Simple Simulation Study

Adjusting a Mean Outcome

A simulation study was undertaken to estimate a mean outcome with a continuous

outcome and three continuous covariates. This study compares the three parametric meth-

ods (imputation, weighting, and DR0) and the two nonparametric doubly robust methods

(DR1 without sample splitting and DR2 with sample splitting). The outcome regression

model in the imputation and DR0 methods is a linear regression model based on X (as

linear terms). The propensity score model in the weighting and DR0 methods is a logistic

regression model based on X ∪X∗ (as linear terms). In the nonparametric methods DR1

and DR2, the outcome regression and propensity score functions are estimated using a super

learner based on glm (generalized linear model), gam (generalized additive model; [28, 54]),

and rpart (recursive partitioning and regression tree; [55, 56]) with X (for the outcome

regression) and X∗ (for the propensity score) as the input covariate vector and with the

identity (for the outcome regression) or logit (for the propensity score) link function. For

the parametric methods, nonparametric bootstrap standard errors are obtained from 200

bootstrap samples. For the nonparametric methods, analytical standard errors are obtained

as sample standard deviations of the estimated influence functions.

These methods are applied to 1000 replicate samples with n = n∗ ∈ {100, 250, 500,

1000} generated as follows. Generate X† from the trivariate standard normal distribution
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and generate Z Bernoulli with probabilities based on

logit[P (Z = 1|X†)] =


X†1 −X

†
2 +X†3 (PS0)

X†1 −X
†
2 +X†3 + 0.25X†1sign(X†2) (PS1)

where sign(u) = I(u > 0)−I(u < 0). Then take a random sample of X from the conditional

distribution X†|Z = 0 and a random sample of X∗ from X†|Z = 1. It follows then from

Bayes’ law that

logit[P (Z = 1|X†)] =


X∗1 −X∗2 +X∗3 (PS0)

τ +X∗1 −X∗2 +X∗3 + 0.25X∗1 sign(X∗2 ) (PS1)

for some constant τ whose exact value is not important to know. The parametric propensity

score model used in the weighting and DR0 methods is correct under PS0 and incorrect

under PS1.

Finally, we generate Y as

Y =


−0.5 +X1 +X3 + ε (OR0)

−1 + (X1 ∨ 0)2 +X3 + ε (OR1)

,

where ∨ denotes maximum and ε ∼ N(0, 1). The parametric outcome regression model

used in the imputation and DR0 methods is correct under OR0 and incorrect under OR1.

The true value of µ∗ in each scenario is shown in Table 2.1, which shows simulation results

in terms of empirical bias, standard deviation (SD), root mean squared error (RMSE), and
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coverage probability (CP) for n = n∗ = 1000. Results for n = n∗ ∈ {100, 250, 500} may be

found in Appendix C, Tables C.1 - C.3.

At larger sample sizes, when the outcome regression model is correct (OR0), the

imputation method works quite well, but it is significantly biased when misspecified (OR1).

The weighting method is quite variable regardless of correct specification of the propensity

score model. The three doubly robust methods are comparable when the parametric out-

come regression method is correct (OR0). When the parametric outcome regression method

is misspecified (OR1), DR1 and DR2 tend to outperform DR0. In these scenarios, DR1

exhibits a small bias but is less variable than DR2. In all scenarios, DR1 and DR2 appear

to have (relatively) reasonable coverage probabilities. At smaller sample sizes decreases,

DR1 continues to perform relatively well, but DR2 gets increasingly biased and variable as

the true outcome regression and propensity score models increase in complexity.

Adjusting a Treatment Effect

We now report a simulation study for estimating an average treatment effect with a

continuous outcome and three continuous covariates. This is similar to the simulation study

reported in the previous subsection and again compares the three parametric methods and

two nonparametric methods. Recall that the nuisance functions d and h in this setting may

be estimated directly by regressing Di and Hi, respectively, on Xi, or indirectly through the

outcome regression function mt, t ∈ {0, 1}. Experimenting with both approaches yielded

generally similar results. The results presented here are based on the indirect approach.
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Table 2.1: Simulation results for estimating a mean outcome: empirical bias, standard devi-
ation (SD), standard error (SE), root mean squared error (RMSE), and coverage probability
(CP) in the simulation study of Section 2.2.1 where n = n∗ = 1000.

Scenario Method Bias SD SE RMSE CP

OR0-PS0
µ∗ ≈ 0.16

Imputation 0.000 0.068 0.068 0.068 0.943
Weighting -0.008 0.184 0.185 0.185 0.846

DR0 0.000 0.095 0.095 0.095 0.942
DR1 -0.001 0.091 0.091 0.091 0.935
DR2 0.000 0.094 0.094 0.094 0.938

OR0-PS1
µ∗ ≈ 0.14

Imputation 0.004 0.066 0.066 0.066 0.954
Weighting 0.063 0.222 0.222 0.231 0.929

DR0 0.006 0.098 0.099 0.099 0.948
DR1 0.004 0.087 0.087 0.087 0.948
DR2 0.005 0.093 0.093 0.093 0.951

OR1-PS0
µ∗ ≈ 0.08

Imputation -0.209 0.078 0.078 0.223 0.676
Weighting 0.004 0.286 0.286 0.286 0.905

DR0 0.000 0.216 0.216 0.216 0.943
DR1 -0.026 0.124 0.124 0.127 0.936
DR2 0.000 0.166 0.166 0.166 0.945

OR1-PS1
µ∗ ≈ 0.08

Imputation -0.226 0.077 0.078 0.239 0.903
Weighting 0.057 0.409 0.409 0.413 0.863

DR0 0.050 0.325 0.325 0.329 0.893
DR1 -0.035 0.213 0.213 0.216 0.912
DR2 0.004 0.237 0.237 0.237 0.914
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As in the mean outcome adjustment setting, the outcome regression model in

the imputation and DR0 methods is a linear regression model based on X and T , i.e.,

a linear regression model for each treatment group. The propensity score model in the

weighting and DR0 methods is again a logistic regression model based on X ∪ X∗. In

the nonparametric methods DR1 and DR2, the outcome regression and propensity score

functions are once again estimated using a super learner based on glm, gam, and rpart with

X and X∗ as the input covariate vector and with the identity or logit link function. For

the parametric methods, nonparametric bootstrap standard errors are obtained from 200

bootstrap samples. For the nonparametric methods, analytical standard errors are obtained

as sample standard deviations of the estimated influence functions.

These methods are again applied to 1000 replicate samples with n = n∗ ∈ {100,

250, 500, 1000} generated as follows. Generate X† and Z in the same manner as in Section

2.1.2, from the trivariate standard normal distribution and

logit[P (Z = 1|X†)] =


X†1 −X

†
2 +X†3 (PS0)

X†1 −X
†
2 +X†3 + 0.25X†1sign(X†2) (PS1)

,

respectively, where sign(u) = I(u > 0)− I(u < 0). The correct or incorrect specification of

PS0 and PS1 remain applicable in the current study. We then take a random sample of X

from the conditional distribution (X†|Z = 0) and a random sample of X∗ from (X†|Z = 1).
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Now, a treatment indicator T is generated as a Bernoulli random variable with

π = P (T = 1) = 1/2, independent of X and the outcome Y is generated as

Y =


−0.5 +X1 +X3 + T − 0.5TX3 + ε (OR0)

−1 + (X1 ∨ 0)2 +X3 + T − 0.5TX3 + 0.25TX2
3 + ε (OR1)

,

where ε ∼ N(0, 1) independent of (X, T ). The parametric outcome regression model used

in the imputation and DR0 methods is correct under OR0 and incorrect under OR1.

Table 2.2 shows the simulation results for n = n∗ = 1000 in the same format as

in Table 2.1. Results for n = n∗ ∈ {100, 250, 500} may be found in Tables C.4 - C.6 in

Appendix C. Results for additional simulation settings may be found in Appendix F.

As in the previous section, with large sample sizes the imputation method performs

quite well when the parametric outcome regression model is correctly specified (OR0) and

is significantly biased when incorrectly specified (OR1). The weighting method again tends

to be quite variable across all scenarios. The three DR methods perform similarly to one

another when the parametric outcome regression model is correctly specified (OR0). DR1

and DR2 outperform the parametric DR0 under incorrect parametric specification of the

outcome regression model (OR1). Here, both DR1 and DR2 have minimal bias, but DR1

tends to be slightly less variable than DR2. As in the mean outcome adjustment setting,

as n = n∗ decreases, DR1 continues to perform relatively well, but DR2 gets increasingly

biased and variable as the true outcome regression and propensity score models increase in

complexity.
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Table 2.2: Simulation results for estimating an average treatment effect: empirical bias,
standard deviation (SD), standard error (SE), root mean squared error (RMSE), and cov-
erage probability (CP) in the simulation study of Section 2.2.1 where n = n∗ = 1000.

Scenario Method Bias SD SE RMSE CP

OR0-PS0
δ∗ ≈ 0.84

Imputation 0.005 0.109 0.109 0.109 0.952
Weighting 0.013 0.447 0.447 0.447 0.955

DR0 0.011 0.178 0.178 0.178 0.954
DR1 0.008 0.159 0.159 0.159 0.947
DR2 0.010 0.172 0.172 0.172 0.955

OR0-PS1
δ∗ ≈ 0.84

Imputation -0.004 0.109 0.109 0.109 0.939
Weighting 0.064 0.471 0.471 0.475 0.952

DR0 0.004 0.186 0.186 0.186 0.945
DR1 0.003 0.163 0.163 0.163 0.938
DR2 0.003 0.172 0.172 0.172 0.941

OR1-PS0
δ∗ ≈ 1.09

Imputation -0.122 0.151 0.151 0.194 0.859
Weighting -0.039 0.709 0.709 0.710 0.944

DR0 -0.026 0.481 0.480 0.481 0.939
DR1 -0.015 0.348 0.348 0.348 0.930
DR2 -0.014 0.367 0.367 0.367 0.929

OR1-PS1
δ∗ ≈ 1.09

Imputation -0.109 0.140 0.139 0.177 0.883
Weighting 0.032 0.677 0.677 0.678 0.967

DR0 -0.004 0.488 0.488 0.488 0.953
DR1 -0.008 0.263 0.263 0.263 0.947
DR2 -0.003 0.300 0.300 0.300 0.953
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2.2.2 A Data-Driven Simulation Study

This study uses data from two clinical trials, the BENCHMRK and SAILING

studies, to inform a more complex simulation setting. Complete results are shown for the

imputation, weighting, and DR0 methods, as well as for the nonparametric doubly robust

methods DR1 and DR2. We also include an unadjusted “näıve” method to demonstrate

the need for these adjustment methods. In the present study, we include additional non-

parametric models to examine the performance of the super learner in DR1 and DR2. We

also examine how all of these methods perform when λ 6= 1 (i.e., when n 6= n∗).

The parametric outcome regression model(s) is a logistic regression model based on

X (as linear terms). The parametric propensity score model is a logistic regression model

based on X ∪ X∗ (as linear terms). In the nonparametric methods DR1 and DR2, the

outcome regression and propensity score functions are estimated using a super learner based

on glm (generalized linear model), gam (generalized additive model; [28, 54]), and rpart

(recursive partitioning and regression tree; [55, 56]) with X (for outcome regression) and

X∗ (for propensity score) as the input covariate vector and with the identity (for outcome

regression) or logit (for propensity score) link function. In order to examine the practical

impact of using the super learner in these methods, we also examine the performance of

DR1 and DR2 when using only gam or rpart to estimate the nuisance functions. For

the parametric methods, nonparametric bootstrap standard errors are obtained from 200

bootstrap samples. For the nonparametric methods, analytical standard errors are obtained

as sample standard deviations of the estimated influence functions.
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Simulated data is based on data from two RCTs for examining efficacy of HIV-1

integrase inhibitors. The first trial, the BENCHMRK study, compares the drug ralte-

gravir to a placebo [52]. The second, the SAILING study, compares raltegravir to the drug

dolutegravir in a non-inferiority trial [53]. The outcome in each trial is an indicator for

virologic response. See Zhang, Nie, Soon, and Hu (2016) for an application to this data

of several parametric methods for treatment effect adjustment. These methods are applied

to 1000 replicate samples of sizes n = n∗ = 500, n = n∗ = 1000; n = 1500, n∗ = 500;

n = 500, n∗ = 1500; and n = 500, n∗ = 10, 000 generated broadly as follows1. The original

data is used to calculate outcome regression and propensity score models, from which we

generate population assignment and outcome for a randomly selected set of covariate data.

We also apply these methods to 1000 replicate samples of size n = n∗ = 1000 under a

slightly modified simulation setting, where we generate an outcome regression model but

maintain the original population assignment. Details for each method of data generation

are included in the following subsections.

Adjusting a Mean Outcome

First, suppose that we are interested in adjusting the mean outcome for the placebo

(T = 0) from the BENCHMRK study population to the SAILING study population, i.e.,

the SAILING study results represent the target population. Data from these studies is used

to generate outcome regression models based on (1) the GLM for E[Y = Y (0)|X], (2) the

1The original sample sizes for the BENCHMRK and SAILING studies are n = 699 and n∗ = 719,
respectively. These data contain 8 variables (4 factor and 4 continuous), resulting in 13 covariates. Various
sample size settings represent several settings where λ = 1 and λ 6= 1, most within a reasonable margin of
the original sample sizes. The final sample size setting, where λ = 20, was chosen to reflect a situation where
data from some RCT is paired with target population data from a large database.
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corresponding GAM, (3) RPART, and finally (4) the super learner model for E[Y |X]. This

data is also used to generate propensity score models for the population based on GLM,

GAM, RPART, and the super learner.

Using the estimated propensity scores, we simulate the population assignment for

each case in the combined covariate data from the BENCHMRK and SAILING studies. We

then take bootstrap samples of the covariate data with the assigned populations to generate

X and X∗. This data is used with the outcome regression models to predict p = P (Y = 1)

for each case in X. Then Y is simulated as a Bernoulli random variable based on the

predicted probabilities p. Results for these simulations may be found in Tables 2.3 below

as well as D.1-D.4.

In the modified setting with no propensity score model, we take two bootstrap

samples from the original covariate data: one from the BENCHMRK study data and one

from the SAILING study data. We then use these samples to predict p = P (Y = 1) for

each case in X and simulate Y as before. Results for this modified setting may be found

in Tables 2.4 and D.5.

As expected, the parametric methods perform well when the data is generated

from (parametric) GLMs. The parametric methods also perform well when the data is

generated using the super learner with GLM as a candidate learner. In fact, the super

learner based outcome regression model for the data is dominated by a GLM. The usefulness

of DR0 versus the imputation and weighting methods is well-established in the literature

[20, 39, 22, 26, 27]. Therefore, we focus our attention to the doubly robust methods. In

general, we note that DR1 and DR2 perform well compared to DR0, with the super learner
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approach resulting in the lowest root mean squared error. In all data generation scenarios,

the naive method demonstrates the importance of adjusting for population differences.

For settings where n 6= n∗, note that results are almost identical across sample size

comparisons when values of n are constant. This makes sense as the outcome regression

model is built entirely from historical population data. The propensity score model is built

from the combined historical and target data and appears to produce similar results (based

on the weighting method) for the same sample size based on the smaller of n and n∗.

Coverage probabilities for 95% Wald confidence intervals suggest that the non-

parametric methods perform about as well as existing methodology, with DR2 typically

showing better coverage than DR1. However, it is worth noting that, while point esti-

mation is quite good, in some scenarios the nonparametric methods have relatively poor

coverage probability. Note that poor coverage probability tends to reflect a poor estimation

of standard deviation, i.e., standard deviation not approximately equal to standard error.

Using bootstrap variance estimation - rather than estimated influence functions - may im-

prove coverage probability. This work was too computationally intensive for the present

simulation study, but warrants further investigation.

Where the propensity score model is unknown, point estimates are adequate but

coverage probabilities are poor. Increasing sample sizes to n = n∗ = 104 did not meaning-

fully improve these results (see Table D.5 for details). However, it is worth noting that these

larger sample sizes highlighted the shortcomings of the parametric methods, with misspeci-

fications resulting in extremely poor coverage probabilities. Instead, it is likely that the true

(unknown) propensity score model in these simulations violates one of our assumptions,
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particularly the rate condition of Assumption 2.10. Bootstrap variance estimation may also

have a positive impact in this setting.

Adjusting a Treatment Effect

In the treatment effect setting, suppose we are interested in estimating the efficacy

of dolutegravir relative to to a placebo, or

δ02 = δ12 − δ01

in the SAILING study population. Here, δ12 is straightforward to estimate as a simple

difference of sample proportions and so the focus for this simulation study is on adjusting

δ01 to the target population.

In this setting, we build outcome regression models for d(X) under d(X) =

m1(X)−m0(X). OR0 represents the generalized linear models E[Y (1)|X] and E[Y (0)|X],

i.e., E[Y (1)|X]−E[Y (0)|X], and OR1 represents the respective nonparametric models. X

and X∗ are simulated as in the previous subsection. A binary treatment T is generated

as a Bernoulli random variable with π = P (T = 1) = 1/2. This data is used with OR0

and OR1 to predict p = P (Y = 1|T = t) for each case in X. Finally, Y is simulated as a

Bernoulli random variable based on the predicted probabilities p. The modified setting is

similar to that described in the previous subsection, where X and X∗ are simulated using

the original population assignment. Results for these simulations may be found in Tables

2.5 as well as D.6-D.9, with results for the modified setting in Tables 2.6 and D.10.
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Again, the parametric methods perform well with data generated from GLMs, in-

cluding with data generated from a super learner dominated by a GLM. As in the previous

section, the naive method demonstrates the importance of these methods. Results again

remain approximately the same along values of n. DR1 and DR2 again perform well com-

pared to DR0, with the super learner approach typically resulting in the lowest root mean

squared error.

Coverage probabilities for 95% Wald confidence intervals suggest that the non-

parametric methods perform about as well as existing methodology when the propensity

score model is known, with DR2 showing better coverage than DR1. It is worth noting

here as well that in some scenarios the nonparametric methods have relatively poor cov-

erage probability and bootstrap variance estimation may be advisable. We also again find

promising point estimates but poor coverage probability where the propensity score model

is unknown, likely due to a violation of Assumption 2.12. Results for the modified setting

where n = n∗ = 104 may be found in Table D.10.

2.3 Application

We now apply the proposed methodology to the cardiology example described in

Section 1.4. To describe the target population, baseline characteristics for TAVR receivers

were pulled from the MedPAR database. These characteristics include demographics (e.g.,

age, gender and race), common cardiac risk factors (e.g., congestive heart failure), and

comorbidities (e.g., chronic pulmonary disease). This analysis includes 49,191 patients in

the MedPAR database who received TAVR between November 1, 2011 and September 30,
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2015. The time period was chosen to maximally include high-risk patients while excluding

intermediate- and low-risk patients (TAVR was approved by the United States Food and

Drug Administration for intermediate-risk patients in 2016).

The CoreValve trial introduced in Section 1.4 enrolled 795 high risk patients at

45 centers in the U.S. and randomized them to TAVR or SAVR in a 1:1 ratio. The pri-

mary endpoint of the trial was all-cause mortality one year post treatment. The primary

hypothesis was a non-inferiority hypothesis, specifically that the one-year mortality rate for

TAVR is no more than 7.5 percentage points higher than that for SAVR. In the clinical

trial, the observed one-year mortality rate for TAVR was 14.2% and for SAVR was 19.1%.

The observed reduction (4.9%, 95% CI: 0.4% to 10.2%) easily met the pre-specified non-

inferiority criterion (p < 0.001) and reached statistical significance for superiority (one-sided

p = 0.036) [32].

Although the CoreValve trial collected baseline covariate information, the covariate

data included in this analysis were obtained by mapping trial subjects to the MedPAR

database. This was done in an effort to ensure consistency; see Butala et al. [57] for details.

This mapping was successful for 600 of the 795 subjects (75.5%) from the CoreValve trial.

These patients were then removed from the aforementioned cohort for the target population

with minimal impact (∼ 1.2%) in order to achieve independence of the two cohorts (trial

and target).

Table 2.7 shows that the two treatment arms for the trial cohort are generally

similar in terms of baseline covariates, in spite of the post hoc subsetting resulting from the

mapping process. Based on these similarities and the illustrative nature of this application,
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we treat the trial cohort as a randomized clinical trial in our analysis. Table 2.7 does show

some differences between the trial cohort overall and the target cohort, which suggests that

adjustments may be necessary in order to appropriately interpret the trial data in the target

population. There appears to be a significant overlap between the two cohorts, making it

feasible to adjust for differential distributions of baseline covariates.

Table 2.8 shows the results (point estimates and standard errors) of estimating

one-year mortality rates for TAVR and SAVR, as well as their difference, in the target

population. Results are obtained from an unadjusted analysis based on sample proportions

in the trial cohort and by applying the methods compared in Sections 2.2.1 and 2.2.1, with

the same super learner library, to the trial and target cohort described previously. Point

estimates across the different methods are generally similar, as are the standard errors.

Comparing these results to those of the original (complete) trial results, estimated one-year

mortality rate has not changed much for TAVR but has decreased slightly for SAVR. This

leads to a slightly reduced treatment difference. One possible reason for this is that TAVR

receivers in the real world may have a slightly better prognosis for SAVR than patients in

the complete trial (as opposed to the trial cohort).

The main limitation of this analysis is its dependence on Assumptions 2.2 and

2.11. In general, these assumptions cannot be verified empirically and must be based on

substantive knowledge. Assumption 2.2 is made plausible by including all relevant prog-

nostic variables for both treatment settings, whereas Assumption 2.11 requires only that all

relevant effect modifiers be included. The latter set of baseline covariates is usually smaller

than the former, thus making Assumption 2.11 more defensible than Assumption 2.2 in
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general. Therefore the treatment effect estimates in Table 2.8 may be more credible than

those for the mean outcomes.
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Table 2.3: Simulation results for estimating a mean outcome: empirical bias, standard devi-
ation (SD), standard error (SE), root mean squared error (RMSE), and coverage probability
(CP) in the simulation study of Section 2.2.2 where n = n∗ = 1000 (λ = 1).

Data Generation Method Bias SD SE RMSE CP

GLM
µ∗ ≈ 0.49

Naive -0.184 0.015 0.016 0.185 0.000
Imputation 0.000 0.029 0.031 0.031 0.930
Weighting 0.004 0.057 0.101 0.101 0.822
DR0 0.001 0.038 0.044 0.044 0.934
DR1 (super learner) 0.000 0.027 0.035 0.035 0.878
DR1 (gam) 0.013 0.035 0.042 0.044 0.906
DR1 (rpart) -0.024 0.027 0.039 0.046 0.761
DR2 (super learner) 0.000 0.030 0.036 0.036 0.902
DR2 (gam) 0.013 0.040 0.048 0.050 0.917
DR2 (rpart) -0.019 0.046 0.038 0.042 0.953

GAM
µ∗ ≈ 0.48

Naive -0.164 0.015 0.015 0.164 0.000
Imputation 0.023 0.029 0.025 0.037 0.859
Weighting -0.004 0.052 0.037 0.085 0.822
DR0 0.013 0.037 0.027 0.051 0.908
DR1 (super learner) 0.006 0.027 0.034 0.035 0.879
DR1 (gam) 0.031 0.035 0.048 0.057 0.792
DR1 (rpart) -0.013 0.028 0.039 0.041 0.822
DR2 (super learner) 0.006 0.030 0.036 0.037 0.907
DR2 (gam) 0.029 0.039 0.059 0.065 0.829
DR2 (rpart) -0.008 0.045 0.041 0.042 0.937

RPART
µ∗ ≈ 0.45

Naive -0.109 0.015 0.017 0.111 0.000
Imputation -0.017 0.022 0.025 0.030 0.853
Weighting 0.028 0.032 0.037 0.047 0.852
DR0 -0.014 0.024 0.027 0.031 0.876
DR1 (super learner) -0.003 0.023 0.027 0.027 0.909
DR1 (gam) -0.032 0.025 0.027 0.042 0.751
DR1 (rpart) -0.004 0.025 0.029 0.029 0.902
DR2 (super learner) -0.002 0.025 0.028 0.028 0.932
DR2 (gam) -0.032 0.027 0.028 0.042 0.795
DR2 (rpart) -0.002 0.027 0.030 0.030 0.924

Super Learner
µ∗ ≈ 0.48

Naive -0.163 0.015 0.016 0.164 0.000
Imputation -0.002 0.025 0.026 0.026 0.944
Weighting 0.056 0.050 0.078 0.096 0.868
DR0 -0.001 0.031 0.035 0.036 0.937
DR1 (super learner) -0.002 0.023 0.028 0.028 0.889
DR1 (gam) -0.012 0.032 0.036 0.038 0.932
DR1 (rpart) -0.016 0.024 0.033 0.036 0.812
DR2 (super learner) -0.002 0.025 0.029 0.029 0.907
DR2 (gam) -0.011 0.035 0.040 0.042 0.947
DR2 (rpart) -0.012 0.039 0.033 0.035 0.973
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Table 2.4: Simulation results for estimating a mean outcome, unknown propensity score
model: empirical bias, standard deviation (SD), standard error (SE), root mean squared
error (RMSE), and coverage probability (CP) in the simulation study of Section 2.2.2 where
n = n∗ = 1000.

Data Generation Method Bias SD SE RMSE CP

GLM
µ∗ ≈ 0.49

Naive -0.179 0.015 0.014 0.179 0.000
Imputation -0.001 0.028 0.028 0.028 0.950
Weighting -0.058 0.049 0.050 0.077 0.696
DR0 0.000 0.037 0.040 0.040 0.933
DR1 (super learner) -0.002 0.023 0.032 0.032 0.832
DR1 (gam) 0.021 0.038 0.042 0.047 0.903
DR1 (rpart) -0.019 0.027 0.040 0.044 0.789
DR2 (super learner) -0.002 0.025 0.033 0.033 0.855
DR2 (gam) 0.021 0.043 0.046 0.050 0.922
DR2 (rpart) -0.017 0.046 0.037 0.041 0.958

GAM
µ∗ ≈ 0.47

Naive -0.153 0.015 0.015 0.154 0.000
Imputation 0.028 0.028 0.027 0.039 0.831
Weighting -0.032 0.049 0.047 0.057 0.850
DR0 0.026 0.037 0.036 0.044 0.884
DR1 (super learner) -0.005 0.022 0.031 0.031 0.841
DR1 (gam) -0.016 0.036 0.038 0.041 0.909
DR1 (rpart) 0.005 0.027 0.039 0.039 0.836
DR2 (super learner) -0.005 0.024 0.032 0.032 0.864
DR2 (gam) -0.017 0.041 0.041 0.045 0.922
DR2 (rpart) 0.004 0.045 0.038 0.038 0.965

RPART
µ∗ ≈ 0.49

Naive -0.202 0.014 0.014 0.202 0.000
Imputation -0.036 0.030 0.029 0.047 0.796
Weighting -0.072 0.050 0.051 0.088 0.666
DR0 -0.018 0.040 0.040 0.044 0.933
DR1 (super learner) -0.021 0.021 0.030 0.036 0.760
DR1 (gam) -0.039 0.041 0.044 0.059 0.849
DR1 (rpart) -0.019 0.025 0.031 0.039 0.809
DR2 (super learner) -0.022 0.024 0.031 0.038 0.798
DR2 (gam) -0.041 0.046 0.048 0.063 0.878
DR2 (rpart) -0.021 0.042 0.035 0.041 0.938

Super Learner
µ∗ ≈ 0.49

Naive -0.177 0.015 0.015 0.177 0.000
Imputation 0.000 0.029 0.028 0.028 0.956
Weighting -0.053 0.049 0.049 0.073 0.750
DR0 0.004 0.038 0.038 0.038 0.943
DR1 (super learner) 0.015 0.023 0.031 0.035 0.804
DR1 (gam) -0.006 0.038 0.040 0.041 0.921
DR1 (rpart) -0.013 0.027 0.039 0.041 0.813
DR2 (super learner) 0.015 0.025 0.032 0.035 0.846
DR2 (gam) -0.007 0.043 0.044 0.044 0.930
DR2 (rpart) -0.012 0.046 0.038 0.039 0.963
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Table 2.5: Simulation results for estimating a treatment effect: empirical bias, standard
deviation (SD), standard error (SE), root mean squared error (RMSE), and coverage prob-
ability (CP) in the simulation study of Section 2.2.2 where n = n∗ = 1000 (λ = 1).

Data Generation Method Bias SD SE RMSE CP

GLM
δ∗ ≈ 0.24

Naive 0.057 0.030 0.031 0.065 0.518
Imputation 0.000 0.053 0.053 0.053 0.958
Weighting 0.002 0.153 0.192 0.192 0.946
DR0 -0.001 0.070 0.083 0.083 0.945
DR1 (super learner) 0.000 0.049 0.063 0.063 0.885
DR1 (gam) 0.004 0.064 0.079 0.079 0.923
DR1 (rpart) 0.006 0.054 0.071 0.071 0.885
DR2 (super learner) 0.010 0.071 0.081 0.082 0.928
DR2 (gam) 0.005 0.096 0.125 0.125 0.951
DR2 (rpart) 0.040 0.073 0.074 0.083 0.922

GAM
δ∗ ≈ 0.25

Naive 0.049 0.030 0.031 0.058 0.627
Imputation -0.013 0.052 0.053 0.055 0.941
Weighting -0.002 0.140 0.182 0.182 0.940
DR0 -0.006 0.069 0.091 0.091 0.944
DR1 (super learner) -0.006 0.049 0.066 0.066 0.884
DR1 (gam) 0.007 0.064 0.092 0.093 0.906
DR1 (rpart) -0.008 0.056 0.072 0.072 0.890
DR2 (super learner) 0.007 0.071 0.092 0.092 0.923
DR2 (gam) 0.009 0.096 0.137 0.137 0.935
DR2 (rpart) 0.036 0.075 0.078 0.086 0.919

RPART
δ∗ ≈ 0.24

Naive 0.044 0.030 0.031 0.054 0.680
Imputation 0.007 0.042 0.044 0.044 0.939
Weighting 0.012 0.090 0.092 0.093 0.946
DR0 -0.009 0.047 0.048 0.049 0.945
DR1 (super learner) 0.004 0.045 0.049 0.049 0.921
DR1 (gam) -0.019 0.050 0.047 0.051 0.950
DR1 (rpart) 0.001 0.053 0.060 0.060 0.922
DR2 (super learner) 0.002 0.058 0.060 0.060 0.951
DR2 (gam) -0.024 0.062 0.060 0.065 0.962
DR2 (rpart) 0.002 0.065 0.067 0.068 0.958

Super Learner
δ∗ ≈ 0.24

Naive 0.057 0.030 0.031 0.065 0.511
Imputation 0.005 0.046 0.046 0.046 0.952
Weighting 0.008 0.136 0.163 0.164 0.957
DR0 -0.004 0.058 0.065 0.066 0.934
DR1 (super learner) 0.000 0.041 0.050 0.050 0.896
DR1 (gam) -0.007 0.057 0.066 0.066 0.947
DR1 (rpart) -0.002 0.048 0.058 0.058 0.884
DR2 (super learner) 0.009 0.056 0.060 0.060 0.936
DR2 (gam) -0.018 0.085 0.106 0.108 0.957
DR2 (rpart) 0.037 0.061 0.061 0.071 0.909
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Table 2.6: Simulation results for estimating a treatment effect, unknown propensity score
model: empirical bias, standard deviation (SD), standard error (SE), root mean squared
error (RMSE), and coverage probability (CP) in the simulation study of Section 2.2.2 where
n = n∗ = 1000 (λ = 1).

Data Generation Method Bias SD SE RMSE CP

GLM
δ∗ ≈ 0.24

Naive 0.057 0.030 0.030 0.065 0.518
Imputation 0.000 0.051 0.050 0.050 0.943
Weighting 0.039 0.135 0.138 0.144 0.938
DR0 -0.001 0.069 0.073 0.073 0.940
DR1 (super learner) -0.001 0.040 0.057 0.057 0.836
DR1 (gam) -0.011 0.070 0.076 0.077 0.935
DR1 (rpart) 0.027 0.055 0.073 0.078 0.845
DR2 (super learner) 0.021 0.053 0.061 0.065 0.885
DR2 (gam) 0.035 0.099 0.106 0.111 0.920
DR2 (rpart) 0.079 0.072 0.074 0.109 0.794

GAM
δ∗ ≈ 0.25

Naive 0.041 0.030 0.030 0.051 0.725
Imputation -0.018 0.050 0.050 0.054 0.931
Weighting 0.025 0.134 0.137 0.139 0.947
DR0 -0.018 0.069 0.072 0.074 0.929
DR1 (super learner) 0.011 0.040 0.058 0.059 0.811
DR1 (gam) 0.005 0.069 0.075 0.075 0.928
DR1 (rpart) -0.023 0.054 0.071 0.074 0.879
DR2 (super learner) 0.033 0.053 0.064 0.072 0.864
DR2 (gam) 0.047 0.100 0.105 0.115 0.931
DR2 (rpart) 0.030 0.072 0.074 0.079 0.932

RPART
δ∗ ≈ 0.20

Naive 0.115 0.030 0.029 0.119 0.029
Imputation 0.057 0.054 0.054 0.078 0.823
Weighting 0.049 0.132 0.138 0.147 0.922
DR0 0.017 0.076 0.078 0.080 0.924
DR1 (super learner) 0.026 0.040 0.061 0.066 0.762
DR1 (gam) 0.007 0.079 0.086 0.086 0.925
DR1 (rpart) -0.011 0.056 0.073 0.074 0.868
DR2 (super learner) 0.069 0.052 0.062 0.093 0.685
DR2 (gam) 0.036 0.096 0.103 0.109 0.924
DR2 (rpart) 0.104 0.071 0.074 0.128 0.700

Super Learner
δ∗ ≈ 0.23

Naive 0.071 0.030 0.031 0.078 0.355
Imputation 0.008 0.052 0.053 0.053 0.942
Weighting 0.035 0.133 0.139 0.144 0.941
DR0 -0.004 0.071 0.077 0.077 0.927
DR1 (super learner) -0.024 0.041 0.060 0.065 0.786
DR1 (gam) 0.023 0.073 0.081 0.085 0.903
DR1 (rpart) -0.007 0.055 0.071 0.072 0.893
DR2 (super learner) 0.003 0.053 0.065 0.065 0.883
DR2 (gam) 0.069 0.097 0.108 0.128 0.870
DR2 (rpart) 0.061 0.071 0.072 0.094 0.881
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Table 2.7: Summary of baseline characteristics for the trial cohort by treatment and overall
and of the target cohort in the cardiology example: mean (standard deviation) for contin-
uous variables and percentage for binary variables.

Patient
Characteristic

Trial Cohort Target
CohortTAVR SAVR Overall

n = 314 n = 286 n = 600 n∗ = 49, 591

age in years 83.6 (6.5) 83.4 (6.2) 83.5 (6.4) 82.7 (7.4)
male sex 52.9 52.1 52.5 51.6

white race 97.1 94.8 96.0 92.9
congestive heart failure 69.7 61.5 65.8 75.2

pulmonary circulation disorder 19.7 18.9 19.3 23.7
chronic pulmonary disease 28.7 26.2 27.5 27.4

hypothyroidism 17.8 16.4 17.1 22.0
renal failure 32.8 29.4 31.2 37.6

frailty percentile 46.2 (27.3) 45.7 (28.9) 46.0 (28.1) 50.8 (28.9)

Table 2.8: Data analysis for the cardiology example: point estimates (standard errors) of
the one-year mortality rates as percentages of TAVR and SAVR as well as their difference
(SAVR - TAVR) in the target population, obtained from an unadjusted analysis of the trial
cohort and by applying the same five methods described in Sections 2.1.1 and 2.1.2 and
compared in Sections 2.2.1 and 2.2.1 to the trial and target cohorts.

Method TAVR SAVR Difference

Unadjusted 13.7 (1.9) 16.8 (2.2) 3.1 (2.9)
Imputation 13.7 (2.0) 17.0 (2.3) 3.3 (3.2)
Weighting 13.6 (2.0) 17.0 (2.5) 3.3 (3.4)

DR0 13.6 (2.1) 17.0 (2.4) 3.4 (3.1)
DR1 13.7 (1.8) 17.3 (2.2) 3.9 (2.9)
DR2 14.5 (2.1) 18.2 (2.5) 3.3 (2.9)
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Chapter 3

Sensitivity Analysis for the

Ignorability Assumption

In practice, the methods used in adjusting for population differences have foun-

dational assumptions which are untestable. In particular, the ignorability assumption (As-

sumptions 2.2 and 2.11) suggests that any differences between populations in mean outcome

or treatment effect are explained sufficiently by the covariates. This is a reasonable assump-

tion in theory, but may be more difficult to satisfy in practice. For example, unmeasured

covariates might cause this assumption to be violated.

It is of interest to conduct a sensitivity analysis to examine the robustness of the

methods used to make inferences based on adjusting for population differences. This is

often recommended for assumptions in the analysis of clinical trials [58], especially in a

missing data context [59, 60]. Scharfstein et al. (2014) reviewed the differences between ad

hoc, local, and global sensitivity analyses. In this review, the authors note that a global
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sensitivity analysis may be the most informative because it allows for a broader exploration

of the impact of violations and for researchers to “stress test” a method in order to determine

at what point inference changes (based on increasingly extreme violations) [61].

Much of the literature on sensitivity analyses focuses on longitudinal studies and

missing data due to dropout [61, 62]. We can conceptualize the mean outcome adjustment

problem in a similar manner: this problem is essentially a study with one assessment time

and all of the counterfactual data is “missing”. With this in mind, we develop a sensitivity

analysis for the ignorability assumption by following the basic approach of Scharfstein et

al. [61, 62] in their parametric and subsequent semi-parametric approaches to a sensitivity

analysis for missing data assumptions in repeated measures studies. This sensitivity analysis

tests the imputation and weighting methods discussed in Chapter 2. Since these are fully

parametric models, the resulting sensitivity analyses are also fully parametric.

3.1 Methodology

3.1.1 Adjusting a Mean Outcome

Define Z ∈ {0, 1} to be the population that an individual is drawn from. Let Y ∗

be the outcome variable for the target population (Z = 1) and X∗ the associated covariates.

Let (Y , X) be the study population counterparts of (Y ∗, X∗). In this setting, all of the

outcome data for the target population (Z = 1) is “missing”, while all of the outcome data

for the alternate population (Z = 0) is not. The observed data consist of {Oi = (Xi, Yi), i =

1, . . . , n}, a random sample of O = (X, Y ), and {O∗i = X∗i , i = 1, . . . , n∗}, a random sample

of O∗ = X∗.
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In order to conduct a sensitivity analysis for the mean outcome adjustment prob-

lem, we make the following assumptions. First, that

X ∗ = X (3.1)

where X (X ∗) denotes the support of X (X∗). This is the same initial assumption made

for the mean outcome adjustment problem discussed in Chapter 2.

Since this sensitivity analysis deals with the ignorability assumption, we modify

this assumption to allow for deviations such that the covariates alone are no longer sufficient

in explaining differences between outcomes in the two populations. Consider

f(Y ∗|X∗ = x) =
f(Y |X = x) exp[ρ(X, Y ;α)]

E{exp[ρ(X, Y ;α)]|X = x}
. (3.2)

where ρ(X, Y ;α) is a known, pre-specified function of X, Y , and some constant α. For

example, we might use αY . It follows that

E(Y ∗|X∗ = x) =
E{Y exp[ρ(X, Y ;α)]|X = x}
E{exp[ρ(X, Y ;α)]|X = x}

. (3.3)

We are interested in estimating µ∗ = E[E{Y ∗|X∗}]. Therefore we will write

E[E(Y ∗|X∗)] =

∫
x

[∫
y
yf∗(y|x)dy

]
f∗(x)dx

=

∫
x

[∫
y
y

f(y|x) exp[ρ(x, y;α)]∫
y exp[ρ(x, u;α)]f(u|x)du

dy

]
f∗(x)dx

where f∗ and f are the densities with respect to {Y ∗,X∗} and {Y,X}, respectively. Setting
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a(x) := E(Y exp[ρ(X, Y ;α)]|X = x) and b(x) := E(exp[ρ(X, Y ;α)]|X = x), we can

rewrite this expectation as

E[E(Y ∗|X∗)] =

∫
x
a(x)b−1(x)f∗(x)dx.

Note that b−1(x) is a multiplicative inverse and not necessarily an inverse function. Similar

notation for the multiplicative inverse is used throughout this chapter.

This motivates the modified imputation (mIM) method,

µ̂∗mIM = n∗−1
n∗∑
i=1

â(X∗i )b̂
−1(X∗i ) (3.4)

where â is some generic estimate of a and b̂ some generic estimate of b, both based on

{(Xi, Yi), i = 1, . . . , n}. Alternatively, we can write

E[E(Y ∗|X∗)] =

∫
x
a(x)b−1(x)f∗(x)dx

=

∫
x
a(x)b−1(x)

f∗(x)

f(x)
f(x)dx

= E

[
Y exp[ρ(X, Y ;α)]b−1(x)

f∗(x)

f (x)

]
.

Assumption 3.1 implies that the ratio r(x) = f∗(x)/f(x) is well-defined and finite for all

x ∈ X . Therefore we can write the following modified weighted (mWT) estimator:

µ̂∗mWT = n−1
n∑
i=1

Yi exp[ρ(Xi, Yi;α)]b̂−1(Xi)r̂(Xi) (3.5)

where r̂ is some generic estimate of r. As in Chapter 2, r may be estimated as r̂(x) =
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exp{logit[p̂(x)]−log(n∗/n)}, where p̂ is a generic binary regression estimate of the propensity

score function.

3.1.2 Adjusting a Treatment Effect

Again define Z ∈ {0, 1} to be the population that an individual is drawn from. Let

Y ∗ be the outcome variable for the target population (Z = 1), X∗ the associated covariates,

and T ∗ the assigned treatment. Let (Y , X, T ) be the study population counterparts

of (Y ∗, X∗, T ∗). In this setting, all of the outcome and treatment data for the target

population (Z = 1) is “missing”, while all of the outcome and treatment data for the

alternate population (Z = 0) is not. The observed data consist of {Oi = (Xi, Ti, Yi), i =

1, . . . , n}, a random sample of O = (X, T, Y ), and {O∗i = X∗i , i = 1, . . . , n∗}, a random

sample of O∗ = X∗.

As in the previous subsection, assume that Assumption 3.1 holds. Again, this is

the same initial assumption made for the treatment effect adjustment problem discussed in

Chapter 2. Since we continue to work with the ignorability assumption, it is of interest to

modify this assumption in the treatment effect adjustment setting to allow for deviations

such that the covariates alone are no longer sufficient in explaining differences between δ

and δ∗. Let D = TY
π −

(1−T )Y
1−π (as in section 2.1.2) and D∗ be the counterpart for the target

population. Assume

f(D∗|X∗ = x) =
f(D|X = x) exp[ρ(X, D;α)]

E{exp[ρ(X, D;α)]|X = x}
(3.6)

where ρ(x, d;α) is some pre-specified function of X, D, and some constant α. For example,
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we might set ρ(X, D;α) = αD. Then

E(D∗|X∗ = x) =
E{D exp[ρ(X, D;α)]|X = x}
E{exp[ρ(X, D;α)]|X = x}

(3.7)

We are interested in estimating δ∗ = E[E(D∗|X∗ = x)]. We will write

E[E(D∗|X∗ = x)] =

∫
x

[∫
d
d

exp[ρ(x, d;α)]f(d|x)∫
d exp[ρ(x, u;α)]f(u|x)du

dd

]
f∗(x)dx

where f∗ and f are the densities with respect to {D∗,X∗} and {D,X}, respectively. Set-

ting w(x) := E{D exp[ρ(X, D;α)]|X = x} and v(x) := E{exp[ρ(X, D;α)]|X = x}, this

expectation can be rewritten as

E{E[D∗|X∗ = x]} =

∫
x
w(x)v−1(x)f∗(x)dx.

This motivates the modified imputation (mIM) estimator

δ̂mIM = n∗−1
n∗∑
i=1

ŵ(X∗i )v̂
−1(X∗i )

where ŵ and v̂ are generic estimates of w and v, respectively, both based on {(Xi, Yi, Ti), i =

1 . . . n}. Alternately, we can write

E{E[D∗|X∗ = x]} =

∫
x
w(x)v−1(x)

f∗(x)

f(x)
f(x)dx

= E

[
D exp[ρ(X, D;α)]v−1(X)

f∗(X)

f(X)

]
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where again Assumption 3.1 implies that the ratio r(x) = f∗(x)/f(x) is well-defined and

finite for all x ∈ X . Then we can write a modified weighted (mWT) estimator

δ̂mWT = n−1
n∑
i=1

Di exp[ρ(Xi, Di;α)]v̂−1(Xi)r̂(Xi)

where r̂ is some generic estimate of r. Again, r may be estimated as r̂(x) = exp{logit[p̂(x)]−

log(n∗/n)} where p̂ is some generic binary regression estimate of the propensity score func-

tion.

3.2 Simulation Studies

We now examine the sensitivity analysis methods developed in the previous section

by extending the simulation studies of Chapter 2. In order to examine the sensitivity of each

of the imputation and weighting based methods to the ignorability assumption, estimates

are compared for a range of α values.

3.2.1 Adjusting a Mean Outcome

We let ρ(X, Y ;α) = αY . Note that, if α = 0, then exp[ρ(X, Y ;α)] = 1 and each

estimator simplifies to the setting described in Chapter 2 where the ignorability assumption

holds. For Y |X ∼ N(µy = Xβ, σ2y)
1, we find

a(x) = E(Y eαY |X) = (µy + ασ2y) exp

(
αµy +

α2σ2y
2

)
1For a binary outcome, consider Y ′|X ∼ N(µy′ , σ2

y′) such that Y ′ = logit(Y ).
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and

b(x) = E(eαY |X) = exp

(
αµy +

α2σ2y
2

)
.

The true value of µ∗α is then found to be µ∗ + ασ2y , where µ∗ is the true mean outcome for

the target population under the ignorability assumption.

For the parametric regression models, we assume Y |X ∼ N(Xβ, σy) and model

a(x) and b(x) accordingly. In this setting, we can simplify the conditional expectation

E[E(Y ∗|X∗)] =

∫
x
a(x)b−1(x)f∗(x)dx

=

∫
x
[m(x) + ασ2y ]f

∗(x)dx

where m(x) is the outcome regression function for the mean outcome adjustment problem.

The modified imputation estimator then becomes

µ̂∗mIM = ασ̂2y + n∗−1
n∗∑
i=1

m̂(X∗i )

where where m̂(x) is some generic estimate of the outcome regression function and σ̂y is

the sample standard deviation of the outcome for the trial population. For the modified

weighting method, we can write

E[E(Y ∗|X∗)] =

∫
x
a(x)b−1(x)

f∗(x)

f(x)
f(x)dx

= exp

(
−
α2σ2y

2

)
E

(
Y exp{α[Y −m(x)]}f

∗(x)

f(x)

)
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and the modified weighting estimator becomes

µ̂∗mWT = exp

(
−
α2σ̂2y

2

)
n−1

n∑
i=1

Yi exp{α[Yi − m̂(Xi)]}r̂(Xi).

Notably, in the basic parametric setting, the weighting estimator now depends on both the

propensity score and outcome regression models.

A Simple Simulation Study

We report on estimating a mean outcome with a continuous outcome and covariates

as described in Section 2.2.1. These methods are applied to 104 replicate samples with

n = n∗ = 1000 and α randomly generated from a Uniform(−1, 1). See Section 2.2.1 for

details on data generation. Under α = 0, the outcome regression model is fully correct under

OR0 and incorrect otherwise. Likewise, the propensity score model is fully correct under

PS0 and incorrect otherwise. We use this simulation study to do an initial examination

of the methodology presented in the previous sections and follow up with a more detailed

examination in our data-driven simulation studies.

Results for this initial examination may be found in Figures 3.1 and 3.2 as well as

numeric results in Tables 3.1 and 3.2. The imputation method performs approximately as

expected, with minimal bias and near-constant variance. The weighting method produces

results which are less intuitive, but recall that the weighting estimator depends on the

outcome regression model. In fact, the weighting estimator now weights also on exp{α[Y −

m̂(X)]}, meaning that values of Y are up-weighted when the outcome regression model

produces large, positive residual
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values and down-weighted for large, negative residual values. This is easy to see in the case

where the outcome regression model is misspecified (OR1).

Figure 3.1: Sensitivity analysis results for the mean outcome estimation, imputation
method. Results are shown for for 10,000 simulated datasets with different values of α.
The target parameter is shown in red.

A Data-Driven Simulation Study

We again report on estimating a mean outcome and average treatment effect with

a binary outcome and covariates. For each α ∈ {−1,−0.5, 0, 0.5, 1}, these methods are
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Figure 3.2: Sensitivity analysis results for the mean outcome estimation, weighting method.
Results are shown for for 10,000 simulated datasets with different values of α. The target
parameter is shown in red.

applied to 103 replicate samples with n = n∗ = 1000. See Section 2.2.2 (Adjusting a Mean

Outcome) for details on data generation. Under α = 0, the outcome regression model is fully

correct under under the GLM-based data generation and incorrect otherwise (note however

that in the case of the super learner-based data generation, the GLM model dominates and

the outcome regression model performs relatively well).

Numeric results for the data generated from a GLM at selected values of α ∈

{−1, 1} are shown in Table 3.3. These results show accurate target parameters based on

the normal models described previously. Results for data generated from GAM, RPART,
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Table 3.1: Sensitivity analysis results for the mean outcome estimation, simple simulation
study imputation method: target parameter (µ∗α), difference between target parameter
under α and target parameter under the ignorability assumption (µ∗α − µ∗0), empirical bias,
standard deviation (SD), root mean squared error (RMSE), and coverage probability (CP)
for n = n∗ = 1000.

Setting α µα µα − µ0 Bias SD RMSE CP

OR0 PS0

-1 -2.39 -2.55 -0.015 0.111 0.114 0.944
-0.5 -1.12 -1.28 -0.009 0.072 0.075 0.949
0 0.16 - 0.000 0.067 0.068 0.943

0.5 1.43 1.27 0.007 0.102 0.105 0.944
1 2.71 2.55 0.014 0.151 0.153 0.949

OR0 PS1

-1 -2.4 -2.54 -0.005 0.110 0.113 0.944
-0.5 -1.13 -1.27 -0.001 0.071 0.070 0.952
0 0.14 - -0.002 0.067 0.067 0.950

0.5 1.41 1.27 0.001 0.101 0.102 0.945
1 2.68 2.54 0.007 0.151 0.154 0.944

OR1 PS0

-1 -2.18 -2.26 -0.214 0.104 0.241 0.488
-0.5 -1.05 -1.13 -0.215 0.068 0.226 0.130
0 0.08 - -0.212 0.076 0.225 0.229

0.5 1.21 1.13 -0.206 0.120 0.242 0.567
1 2.34 2.26 -0.201 0.174 0.273 0.740

OR1 PS1

-1 -2.16 -2.24 -0.217 0.102 0.243 0.463
-0.5 -1.04 -1.12 -0.219 0.067 0.229 0.095
0 0.08 - -0.225 0.076 0.238 0.184

0.5 1.20 1.12 -0.233 0.117 0.264 0.478
1 2.32 2.24 -0.237 0.170 0.297 0.671

and super learner may be found in Appendix E. These results use working models that

estimate a(x) and b(x) directly. It should be noted that this approximation is unlikely to

be as accurate as the target parameter calculation for the data generated from the GLM.

Note that the misspecifications in this study are more subtle than those in our simple

simulation study. This may be due in part to the bounded nature of predicted outcomes for

a logistic regression model. As a partial result, we do not see some of the extreme deviations

that we saw in the previous section.
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Table 3.2: Sensitivity analysis results for the mean outcome estimation, simple simulation
study weighting method: target parameter (µ∗α), difference between target parameter under
α and target parameter under the ignorability assumption (µ∗α−µ∗0), empirical bias, standard
deviation (SD), root mean squared error (RMSE), and coverage probability (CP) for n =
n∗ = 1000.

Setting α µα µα − µ0 Bias SD RMSE CP

OR0 PS0

-1 -2.39 -2.55 1.003 0.249 1.059 0.131
-0.5 -1.12 -1.28 0.735 0.132 0.776 0.014

0 0.16 - -0.005 0.123 0.201 0.876
0.5 1.43 1.27 -0.693 0.182 0.763 0.217
1 2.71 2.55 -0.827 0.384 1.146 0.408

OR0 PS1

-1 -2.4 -2.54 1.017 0.261 1.085 0.155
-0.5 -1.13 -1.27 0.762 0.143 0.801 0.016

0 0.14 - 0.055 0.136 0.228 0.919
0.5 1.41 1.27 -0.604 0.195 0.712 0.291
1 2.68 2.54 -0.652 0.414 1.263 0.487

OR1 PS0

-1 -2.18 -2.26 -0.168 0.290 0.456 0.937
-0.5 -1.05 -1.13 0.209 0.122 0.258 0.612

0 0.08 - -0.005 0.150 0.314 0.845
0.5 1.21 1.13 7.402 0.883 95.16 0.937
1 2.34 2.26 1.43× 103 10.81 1.74× 104 0.797

OR1 PS1

-1 -2.16 -2.24 -0.233 0.295 0.475 0.944
-0.5 -1.04 -1.12 0.188 0.124 0.243 0.687

0 0.08 - 0.058 0.172 0.361 0.875
0.5 1.20 1.12 7.271 1.004 48.64 0.938
1 2.32 2.24 1.46× 105 12.23 6.38× 106 0.794

These results demonstrate the importance of the ignorability assumption in draw-

ing correct inference in the mean outcome adjustment setting. In the imputation method,

correct specification of α results in estimators which are generally unbiased. For the set-

tings where the outcome regression model is misspecified, bias tends to be consistent across

levels of α. The modified weighting method is slightly more complex due in part to its

dependence on the specification of an outcome regression model in estimating b(x). As α

increases, the modified WT method puts more weight on larger residual values from the

outcome regression model.
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Table 3.3: Sensitivity analysis results for the mean outcome estimation: target parameter
(µ∗α), difference between target parameter under α and target parameter under the ignor-
ability assumption (µ∗α − µ∗0), empirical bias, standard deviation (SD), root mean squared
error (RMSE), and coverage probability (CP) for n = n∗ = 1000. Data is simulated from a
GLM.

Method α µ∗α µ∗α − µ∗ Bias SD RMSE CP

Modified Imputation

-1 0.281 -0.213 -0.002 0.028 0.028 0.939
-0.5 0.388 -0.107 -0.001 0.028 0.028 0.943

0 0.494 - 0.001 0.029 0.031 0.935
0.5 0.601 0.107 -0.002 0.030 0.031 0.936
1 0.707 0.213 -0.001 0.032 0.033 0.934

Modified Weighting

-1 0.281 -0.213 0.061 0.047 0.159 0.839
-0.5 0.388 -0.107 0.019 0.050 0.093 0.855

0 0.494 - 0.008 0.054 0.159 0.809
0.5 0.601 0.107 0.002 0.061 0.125 0.816
1 0.707 0.213 0.037 0.071 0.143 0.831

In all settings, we can see significant deviation between µ∗α and µ∗ for nonzero

values of α. That is, these methods are quite sensitive to the ignorability assumption. In

settings where the model is misspecified, the resulting estimates are particularly concerning

since neither the correct model nor the degree of deviation from the assumption of strong

ignorability is known in practice.

3.2.2 Adjusting a Treatment Effect

We let ρ(X, D;α) = αD. Note that, if α = 0, then exp[ρ(X, D;α)] = 1 and

each estimator again simplifies to the setting described in Chapter 2 where the ignorability

assumption holds. Now consider the distribution of D|X based on a mixture of the normal

distributions Y1|X ∼ N(µy1 = Xβ, σ2y1) and Y0|X ∼ N(µy0 = Xγ, σ2y0)2. Now we can

2As in the previous subsection, if we are working with a binary outcome, we consider Y ′t |X ∼ N(µy′
t
, σ2

y′
t
)

such that Y ′t = logit(Yt).
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calculate

w(x) =E(DeαD|X)

=

(
µy1 +

ασ2y1
π1

)
exp

[
αµy1
π1

+
1

2

(
ασy1
π1

)2
]

−

(
µy0 −

ασ2y0
1− π1

)
exp

[
−αµy0
1− π1

+
1

2

(
ασy0

1− π1

)2
]

and

v(x) = E(eαD|X) = π1 exp

[
αµy1
π1

+
1

2

(
ασy1
π1

)2
]

+ (1−π1) exp

[
−αµy0
1− π1

+
1

2

(
ασy0

1− π1

)2
]
,

which allows us to calculate the true value of δ∗. We estimate w(x) and v(x) accordingly

based on regression models for m1(x) and m0(x), as well as generic estimates for σy1 and

σy0 . For example,

v̂(x) = π1 exp

[
αm̂1(x)

π1
+

1

2

(
ασ̂y1
π1

)2
]

+ (1− π1) exp

[
−αm̂0(x)

1− π1
+

1

2

(
ασ̂y0

1− π1

)2
]
,

where m̂1 and m̂0 are generic estimates of the outcome regression functions m1 and m0 (see

Chapter 2 for details).

A Simple Simulation Study

Here we report on estimating an average treatment effect with a continuous out-

come and covariates as described in Section 2.2.1. These methods are applied to 104 repli-

cate samples with n = n∗ = 1000 and α randomly generated from a Uniform(−1, 1). Under
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α = 0, the OR0 and PS0 are correct. We again use the simple simulation study to do an

initial examination of the methodology presented in the previous sections and follow up

with a more detailed examination in our data-driven simulation studies.

Results may be found in Figures 3.3 and 3.4 with numeric results in Tables 3.4

and 3.5. The modified imputation method has some bias for α 6= 0 and relatively constant

variance. The modified weighting method again produces results which are less intuitive,

but recall that the modified weighting estimator depends on the outcome regression model.

In this case the modified weighting estimator weights on exp(αD)v̂−1(x). Here, values of

D are up-weighted when v̂ is close to 0. For large values of m̂1(x) or m̂0(x) (relative to one

another), this becomes increasingly likely as |α| grows. This is easy to see for OR1 (where

the outcome regression model is misspecified) and can result in extreme estimates which

have a significant impact on both mean bias and standard deviation.

A Data-Driven Simulation Study

These methods are again applied to 103 replicate samples with n = n∗ = 1000. See

Section 2.2.2 (Adjusting a Treatment Effect) for details on data generation. Under α = 0,

the outcome regression model is fully correct under the GLM-based data generation and

incorrect otherwise (but note that in the case of the super learner-based data generation,

the GLM model dominates and the outcome regression model performs relatively well).
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Figure 3.3: Sensitivity analysis results for the treatment effect estimation, imputation
method. Results are shown for for 10,000 simulated datasets with different values of α.
The target parameter is shown in red.

Results for these simulations are shown in Table 3.6 with results from data gen-

erated from GAM, RPART, and super learner models in Appendix E. As in the previous

section, results for the GLM-based data simulation are based on the true values, while target

quantities for GAM, RPART, and super learner models require working models for v and w

which may not be completely accurate. These results are generally similar to those found

in the previous section. In the imputation method, correct specification of α again results

in estimators which are generally unbiased. For the settings where the outcome regression

model is misspecified, bias tends to be consistent across levels of α. The modified weighting

66



Figure 3.4: Sensitivity analysis results for the treatment effect estimation, weighting
method. Results are shown for for 10,000 simulated datasets with different values of α.
The target parameter is shown in red.

method is again more complex in terms of model specification as it requires the specification

of an outcome regression model to estimate v(x). As in the previous subsection, methods

are highly sensitive to the ignorability assumption where α is assumed equal to zero.

67



Table 3.4: Sensitivity analysis results for a treatment effect estimation, simple simulation
study imputation method: target parameter (δ∗α), difference between target parameter under
α and target parameter under the ignorability assumption (δ∗α−δ∗0), empirical bias, standard
deviation (SD), root mean squared error (RMSE), and coverage probability (CP) for n =
n∗ = 1000.

Setting α µα µα − µ0 Bias SD RMSE CP

OR0 PS0

-1 -10.28 -11.12 -0.497 0.635 0.798 0.871
-0.5 -4.72 -5.56 -0.906 0.350 0.970 0.263

0 0.84 - 0.000 0.113 0.109 0.939
0.5 5.64 4.8 1.243 0.287 1.274 0.008
1 9.98 9.14 1.622 0.461 1.687 0.062

OR0 PS1

-1 -10.3 -11.14 -0.395 0.620 0.732 0.901
-0.5 -4.7 -5.54 -0.874 0.350 0.940 0.282

0 0.84 - 0.002 0.107 0.108 0.945
0.5 5.58 4.74 1.275 0.286 1.305 0.004
1 9.87 9.03 1.667 0.467 1.729 0.047

OR1 PS0

-1 -8.97 -10.05 0.291 0.778 0.774 0.912
-0.5 -3.98 -5.06 -0.109 0.448 0.420 0.922

0 1.08 - -0.115 0.149 0.184 0.866
0.5 5.29 4.21 0.355 0.358 0.478 0.785
1 8.95 7.87 0.865 0.557 1.018 0.644

OR1 PS1

-1 -9.06 -10.15 0.520 0.803 0.872 0.846
-0.5 -4.01 -5.1 0.035 0.425 0.391 0.926

0 1.09 - -0.115 0.144 0.183 0.876
0.5 5.22 4.13 0.332 0.332 0.455 0.802
1 8.82 7.73 0.855 0.550 0.997 0.617
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Table 3.5: Sensitivity analysis results for a treatment effect estimation, simple simulation
study weighting method: target parameter (δ∗α), difference between target parameter under
α and target parameter under the ignorability assumption (δ∗α−δ∗0), empirical bias, standard
deviation (SD), root mean squared error (RMSE), and coverage probability (CP) for n =
n∗ = 1000.

Setting α µα µα − µ0 Bias SD RMSE CP

OR0 PS0

-1 -10.28 -11.12 9.982 0.317 9.982 0.000
-0.5 -4.72 -5.56 3.392 0.600 3.400 0.001

0 0.84 - -0.007 0.435 0.289 0.890
0.5 5.64 4.8 -3.188 1.122 3.209 0.010
1 9.98 9.14 -9.330 0.789 9.332 0.000

OR0 PS1

-1 -10.3 -11.14 9.991 0.233 9.991 0.000
-0.5 -4.7 -5.54 3.281 1.275 3.292 0.004

0 0.84 - 0.031 0.482 0.325 0.862
0.5 5.58 4.74 -2.969 1.042 2.996 0.014
1 9.87 9.03 -9.152 1.229 9.154 0.001

OR1 PS0

-1 -8.97 -10.05 −1.54× 108 6.79× 109 1.54× 108 0.599
-0.5 -3.98 -5.06 -238.5 2.89× 103 237.6 0.597

0 1.08 - -0.012 0.689 0.359 0.849
0.5 5.29 4.21 9.21× 103 3.53× 105 9.21× 103 0.561
1 8.95 7.87 8.69× 106 1.81× 108 8.69× 108 0.568

OR1 PS1

-1 -9.06 -10.15 −3.35× 108 1.36× 1010 3.35× 108 0.592
-0.5 -4.01 -5.1 −8.80× 103 2.56× 105 8.80× 103 0.608
0 1.09 - 0.017 0.791 0.419 0.848

0.5 5.22 4.13 1.50× 103 3.24× 104 1497.8 0.560
1 8.82 7.73 1.13× 1011 5.01× 1012 1.13× 1011 0.566

Table 3.6: Sensitivity analysis results for treatment effect estimation: target parameter (δ∗α),
difference between target parameter under α and target parameter under the ignorability
assumption (δ∗α − δ∗0), empirical bias, standard deviation (SD), root mean squared error
(RMSE), and coverage probability (CP) for n = n∗ = 1000. Data is generated from a
GLM.

Method α δ∗α δ∗α − δ∗ Bias SD RMSE CP

Modified Imputation

-1 -1.650 -1.888 -0.006 0.103 0.104 0.954
-0.5 -0.866 -1.105 -0.036 0.089 0.094 0.914

0 0.239 - -0.002 0.055 0.053 0.940
0.5 1.380 1.142 0.042 0.063 0.075 0.890
1 2.227 1.988 0.005 0.064 0.068 0.972

Modified Weighting

-1 -1.650 -1.888 0.387 0.428 0.427 0.347
-0.5 -0.866 -1.105 0.081 0.264 0.186 0.818
0 0.239 - -0.002 0.238 0.148 0.901

0.5 1.380 1.142 -0.211 0.261 0.265 0.598
1 2.227 1.988 -0.894 0.221 0.907 0.012
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Chapter 4

Discussion

In any experimental or observational research setting, there is always the possibil-

ity that the sample population does not match the population of interest. This can occur

due to any number of ethical or practical constraints. Here, we have focused our attention

specifically on RCTs with non-longitudinal outcomes. Effective use of a variety of informa-

tion sources, both experimental and observational, can help provide information about the

population of interest. However, population differences necessitate more nuanced methods

for combining these sources of evidence.

For a clinician interested in adjusting for population differences, misspecification

of parametric models may result in biased estimators with poor coverage probability. A

nonparametric approach can help mitigate these issues. For someone less familiar with

semi-parametric machine learning methods, an ensemble learner such as the super learner

may make these methods more accessible. While there is obviously some appeal in applying

a semi-parametric approach to the more intuitive imputation and weighting methods, it is
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not clear how to ensure that these estimators are
√
n-consistent and asymptotically normal.

This is a concern for both point estimates and variance/confidence interval estimation. In

this work, we show that machine learning-based doubly robust methods are effective in

adjusting for population differences, despite the potentially complex nature of healthcare

data. These nonparametric estimators of mean outcomes and treatment differences are

√
n-consistent, asymptotically normal, and asymptotically efficient under mild conditions.

There are many machine learning methods available, each with their own strengths

and weaknesses. Each of the two semiparametric DR methods developed here utilize the

principle of super learning, combining candidate machine learning algorithms into a single

learner with an oracle property. The first method, DR1, utilizes a super learner alone

to estimate the various nuisance functions. This method has the potentially complicating

feature of a Donsker condition for efficiency and
√
n consistency, which puts a restriction on

the available classes of machine learning algorithms. The second method, DR2, uses sample

splitting to remove this restriction, thus opening up the list of potential candidate learners.

Based on both theory and simulation results, the semiparametric DR methods

are promising. Because parametric models are so difficult to specify correctly in practice,

semiparametric DR models are an appealing alternative approach to evidence synthesis

problems. Despite the limitation on the class of appropriate algorithms for DR1 (based on

the Donsker condition), DR1 and DR2 both perform relatively well. However, it is possible

that a super learner library with other, more complex machine learning algorithms might

benefit greatly from the use of sample splitting.
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Even when parametric models are correctly specified, the imputation and DR0

methods appear to be advantageous only in their potentially faster run times. There does

not appear to be any advantage to the WT method. Further, the parametric methods based

on imputation and weighting are particularly concerning given their performance in the

sensitivity analysis, where even relatively small deviations from the ignorability assumption

may cause significant bias and high variability.

4.1 Ongoing and Future Work

One of the many difficulties with health care research is the high-dimensional na-

ture of the data. The super learner based methods should be well-suited to high-dimensional

data when used with an appropriate library of candidate learners, e.g., Ridge, LASSO, and

elastic net regression [63]. It may be of interest to examine the performance of these methods

on high-dimensional data in both simulated and real-world settings.

As mentioned in Section 2.2.2, it may be of interest to examine the use of boot-

strap variance estimation in calculating confidence intervals for the nonparametric methods

DR1 and DR2. We may also want to perform a more thorough examination of violations

of the rate conditions of Assumptions 2.10 and 2.12, either by sensitivity analysis or by

finding ways to achieve better coverage probability when these assumptions are violated. A

preliminary examination of the “misses” in coverage probability suggests that for unbiased

estimates, the misses may not be split evenly between below and above the confidence in-

terval. That is, for a 95% Wald confidence interval, we would expect 2.5% of the estimates

to fall below the calculated interval and 2.5% to fall above. This cursory examination did
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not highlight a specific pattern in terms of when or how the misses were unevenly split.

However, this may warrant further investigation.

It is also of interest to expand the sensitivity analysis to include the doubly robust

estimators, both parametric and nonparametric. This will require deriving the efficient

influence curve (canonical gradient) under the modified ignorability assumptions described

in Chapter 3. At this time, we are unsure whether this derivation is possible. However, given

that the two parametric methods examined in the sensitivity analysis are highly sensitive to

the ignorability assumption, we would like to examine how the three doubly robust methods

perform.

An evaluation of our other key assumption (Assumption 2.1), that all patients in

the target population are represented in the study population, may also be of interest. Near

violations of this assumption will result in P (Z|X) close to 0 or 1 for certain values of X.

An examination of how the nonparametric DR methods perform under these near violations

may be useful, whether in examining their limitations or in lending additional support for

their performance.

Finally, adjusting for population differences is work that may be extended into

other settings. For example, it may be of interest to expand this work into a longitudinal

setting with subject-specific effects.
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Appendix A

Asymptotic Theory

Let Pn denote the empirical distribution of Oi, i = 1, . . . , n and Pn∗ analogously

for O∗i , i = 1, . . . , n∗. Let P0 be the true distribution of O or O∗, depending on context. The

corresponding empirical processes are denoted by Qn =
√
n(Pn−P0) and Q∗ =

√
n∗(Pn∗ −

P0). We use operator notation for integrals, writing µ̂∗DR = Pn{Y−m̂(X)}r̂(X)+Pn∗m̂(X∗)

for example.

A.1 Asymptotics for µ̂∗DR1

In addition to Assumptions 2.1, 2.2, and 2.10, we assume that there exist function

classesM and R such that m ∈M, r ∈ R, P(m̂ ∈M, r̂ ∈ R)→ 1, and the induced classes

{m†(X∗) : m† ∈M} and {[Y −m†(X)]r†(X) : m† ∈M, r† ∈ R}
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are Donsker for Qn∗ and Qn, respectively, with square-integrable envelopes. We may then

write

√
n(µ̂∗DR1 − µ∗) =

√
n[Pn{Y − m̂(X)}r̂(X) + Pn∗m̂(X∗)]

−
√
n[P0{Y −m(X)}r(X) + P0m(X∗)]

=
√
n[Pn{Y − m̂(X)}r̂(X)− P0{Y −m(X)}r(X)]

+
√
n[Pn∗m̂(X∗)− P0m(X∗)]

=Qn{Y − m̂(X)}r̂(X) +
√
nP0[{Y − m̂(X)}r̂(X)− {Y −m(X)}r(X)]

+
√
n/n∗Qn∗m̂(X∗) +

√
nP0{m̂(X∗)−m(X∗)}.

By the dominated convergence theorem, {Y − m̂}r̂(X), as a random element in L2(P0),

converges in probability to {Y − m(X)}r(X). This, along with the assumed Donsker

condition and Theorem 19.24 of van der Vaart (1998), implies that

Qn{Y − m̂(X)}r̂(X) = Qn{Y −m(X)}r(X) + op(1).

It can be argued similarly that Qn∗m̂(X∗) = Qn∗m(X∗) + op(1). Thus, to demonstrate

that

√
n(µ̂∗DR1 − µ∗) = Qn{Y −m(X)}r(X) + λ−1/2Qn∗m(X∗) + op(1),

it suffices to show that

Cn := P0[{Y − m̂(X)}r̂(X)− {Y −m(X)}r(X)] + P0{m̂(X∗)−m(X∗)} = op(n
−1/2).
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Then we can write

Cn =P0{Y − m̂(X)}{r̂(X)− r(X)} − P0{m̂(X)−m(X)}r(X) + P0{m̂(X∗)−m(X∗)}

=P0{Y − m̂(X)}{r̂(X)− r(X)}

=P0{Y −m(X)}{r̂(X)− r(X)} − P0{m̂(X)−m(X)}{r̂(X)− r(X)}

=− P0{m̂(X)−m(X)}{r̂(X)− r(X)}

where the second step follows from the definition of r and the final step from the definition

of m. Finally, we apply the Cauchy-Schwartz inequality

|Cn| ≤ ||m̂−m||2||r̂ − r||2

and, invoking the rate condition in Assumption 2.10, the proof is complete.

A.2 Asymptotics for µ̂∗DR2

Assume 2.1, 2.2, and 2.10 and that L is fixed. Additionally, assume that there

exist function classes M and R such that m ∈ M, r ∈ R, P(m̂ ∈ M, r̂ ∈ R)→ 1 and that

the induced classes

{m†(X∗) : m† ∈M} and {(Y −m†(X))r†(X) : m† ∈M, r† ∈ R}

have square-integrable envelopes. (Notice that we do not assume that the classes are

Donsker.) For each l ∈ {1, . . . , L}, let P
(l)
n denote the empirical distribution of {Oi : Si = l}
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and P
(l)
n∗ the empirical distribution of {O∗i : S∗i = l}. The corresponding empirical pro-

cesses are denoted by Q
(l)
n =

√
nl(P

(l)
n −P0) and Q

(l)
n∗ =

√
n∗l (P

(l)
n∗ −P0), respectively, where

nl =
∑n

i=1 Si and n∗l =
∑n∗

i=1 S
∗
i . Then we can write

√
n(µ̂∗DR2 − µ∗) =

1√
n

L∑
l=1

nlP
(l)
n {Y − m̂(−l)(X)}r̂(−l)(X)−

√
nP0{Y −m(X)}r(X)

+

√
n

n∗

L∑
l=1

n∗l P
(−l)
n∗ (X∗)−

√
nP0m(X∗)

=
1√
n

L∑
l=1

√
nlQ

(l)
n {Y − m̂(−l)(X)}r̂(−l)(X) +

√
n

n∗

L∑
l=1

√
n∗lQ

(l)
n∗m̂

(−l)(X∗)

+
1√
n

L∑
l=1

nlP0[{Y − m̂(−l)(X)}r̂(−l)(X)− {Y −m(X)}r(X)]

+

√
n

n∗

L∑
l=1

n∗l P0{m̂(−l)(X∗)−m(X∗)}

=:An +Bn + C1n + C2n.

It follows from Lemma 2 of Kennedy et al. [47] that, for each l ∈ {1, . . . , L},

Q(l)
n {Y − m̂(−l)(X)}r̂(−l)(X) = Q(l)

n {Y −m(X)}r(X) + op(1),

Q
(l)
n∗m̂

(−l)(X∗) = Q
(l)
n∗m(X∗) + op(1).

Therefore,

An +Bn = Qn{Y −m(X)}r(X) + λ−1/2Qn∗m(X∗) + op(1),
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and it is sufficient to show that C1n+C2n = op(1). For each l ∈ {1, . . . , L}, it can be shown

as in the proof for µ̂∗DR1 that

P0[{Y − m̂(−1)(X)}r̂(−l)(X)−{Y −m(X)}r(X)] +P0{m̂(−l)(X∗)−m(X∗)} = op(n
−1/2).

It follows that

C1n + C2n =
√
n

L∑
l=1

{(
n∗l
n∗
− nl
n

)
P0{m̂(−l)(X∗)−m(X∗)}+

nl
n
op(n

−1/2)

}

=
√
n

L∑
l=1

{Op(n−1/2)op(1) +Op(1)op(n
−1/2)}

= op(1),

completing the proof for µ̂∗DR2

A.3 Asymptotics for δ̂∗DR1

Assume 2.1, 2.11, and 2.12 and that there exist function classes D, R, and H such

that d ∈ D, r ∈ R, and h∞ ∈ H, P(d̂ ∈ D, r̂ ∈ R, ĥ ∈ H)→ 1 and the induced classes

{d†(X∗) : d† ∈ D} and {r†(X)[D − d†(X)− (T − π)h†(X)] : d† ∈ D, r† ∈ R, h† ∈ H}
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are Donsker for Qn∗ and Qn, respectively, with square-integrable envelopes. We start by

writing

√
n(δ̂∗DR1 − δ∗) =

√
n
(
Pn∗ d̂(X∗) + Pn[r̂(X){D − d̂(X)− (T − π)ĥ(X)}]

)
−
√
n
(
P0d(X∗) + P0[r(X){D − d(X)− (T − π)h(X)}]

)
=
√
n{Pn∗ d̂(X∗)− P0d(X∗)}+

√
nPn[r̂(X){D − d̂− (T − π)ĥ(X)}]

−
√
nP0[r(X){D − d(X)− (T − π)h∞(X)}]

=
√
n/n∗Qn∗ d̂(X∗) +Qn[r̂(X){D − d̂(X)− (T − π)ĥ(X)}]

+
√
nP0{d̂(X∗)− d(X∗)}+

√
nP0[r̂(X){D − d̂(X)} − r(X){D − d(X)}

where we have used the fact that P0{r̂(X)(T − π)ĥ(X))} = P0{r(X)(T − π)h∞(X)} = 0.

The same arguments as in the proof for µ̂∗DR1 can be used to demonstrate that

Qn∗ d̂(X∗) = Qn∗d(X∗) + op(1),

Qn[r̂(X){D − d̂(X)− (T − π)ĥ(X)}] = Qn[r(X){D − d(X)− (T − π)h∞(X)}] + op(1),

and

√
nP0{d̂(X∗)− d(X∗)}+

√
nP0[r̂(X){D − d̂} − r(X){D − d(X)}] = op(1).

It follows that

√
n(δ̂∗DR1 − δ∗) = λ−1/2Qn∗d(X∗) +Qn[r(X){D − d(X)− (T − π)h∞(X)}] + op(1).
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A.4 Asymptotics for δ̂∗DR2

In addition to assumptions 2.1, 2.11, and 2.12, we assume that L is fixed and that

there exist function classes D, R, and H such that d ∈ D, r ∈ R, h∞ ∈ H, P(d̂ ∈ D, r̂ ∈

R, ĥ ∈ H)→ 1, and the induced classes

{d†(X∗) : d† ∈ D} and {r†(X)(D − d†(X)− (T − π)h†(X)) : d† ∈ D, r† ∈ R, h† ∈ H}

have square-integrable envelopes. (Notice that we do not assume that these classes are

Donsker.) For each l ∈ {1, . . . , L}, let P
(l)
n denote the empirical distribution of {Oi : Si = 1}

and P
(l)
n∗ the empirical distribution of {O∗i : S∗i = 1}. The corresponding empirical processes

are denoted by Q
(l)
n =

√
nl(P

(l)
n − P0) and Q

(l)
n∗ =

√
n∗l (P

(l)
n∗ − P0), respectively, where
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nl =
∑n

i=1 Si and n∗l =
∑n∗

i=1 S
∗
i . Now we can write

√
n(δ̂∗DR2 − δ∗) =

1√
n

L∑
l=1

nlP
(l)
n [r̂(−l)(X){D − d̂(−l)(X)− (T − π)ĥ(−l)(X)}]

−
√
nP0[r(X){Y − d(X)− (T − π)h∞(X)}]

+

√
n

n∗

L∑
l=1

n∗l P
(l)
n∗ d̂

(−l)(X∗)−
√
nP0d(X∗)

=
1√
n

L∑
l=1

√
nlQ

(l)
n [r̂(−l)(X){D − d̂(−l)(X)− (T − π)ĥ(−l)(X)}]

+

√
n

n∗

L∑
l=1

√
n∗lQ

(l)
n∗ d̂

(−l)(X∗)

+
1√
n

L∑
l=1

nlP0[r̂
(−l)(X){D − d̂(−l)(X)} − r(X){D − d(X)}]

+

√
n

n∗

L∑
l=1

n∗l P0{d̂(−l)(X∗)− d(X∗)}

=:A′n +B′n + C ′1n + C ′2n.

The same arguments as in the proof for µ̂∗DR2 can then be used to demonstrate

A′n = Qn[r(X){D − d(X)− (T − π)h∞(X)}] + op(1),

B′n = λ−1/2Qn∗d(X∗) + op(1),

C ′1n + C ′2n = op(1).

It follows that

√
n(δ̂∗DR2 − δ∗) = λ−1/2Qn∗d(X∗) +Qn[r(X){D − d(X)− (T − π)h∞(X)}] + op(1).
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Appendix B

The Super Learner

In order to apply machine learning methods to evidence synthesis, we must also

consider some candidate learners, all of which may be carried out using v-fold cross-

validation. Cross validation works by dividing the available data into v roughly equally

sized subsamples and constructing a training set from v − 1 of them and a validation set

from the remaining subsample. The training set is used to construct (“train”) the estima-

tors and the validation set is used to asses the performance (“validate”) those estimators.

This process is repeated v times, with each subsample serving as the validation set exactly

one time. Simple selection by cross-validation then chooses the learning algorithm with the

best overall performance on the validation sets, based on average risk (cross-validated risk).

In the super learner setting, this concept is taken a step further. Now, instead of

choosing the learning method with the lowest cross-validated risk, candidate learners are

assigned weights and combined. Van der Laan, Polley and Hubbard (2007) propose the

following algorithm. We want to estimate m0(X) = E0(Y |X) for some Y ∈ Y, X ∈ X and
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can define the regression as the minimizer of the expected squared loss,

m0 = arg min
α0

E0L(O,α),

where L(O,α) = {Y − m(X)}2. Suppose in this case that we are estimating the nui-

sance function m with candidate learners m̂k, k = 1, . . . ,K. The super learner is a linear

combination of the K candidates with coefficients determined via a v-fold cross-validation

procedure, referred to by Van der Laan et al. as the minimum cross-validated risk predictor.

Let the sample {(Xi, Yi), i = 1, . . . , n} be partitioned randomly into J subsamples that are

roughly equal in size. For each j ∈ {1, . . . , J}, use the jth subsample as a validation sample

and combine the other subsamples into a training sample. Obtain m̂
(−j)
k from this training

sample using the same method used for obtaining m̂k. Then the coefficients for the training

sample are found using

(α̂, . . . , α̂K) = arg min
(α1,...,αK)

n∑
i=1

{
Yi −

K∑
k=1

αkm̂
(−ji)
k (Xi)

}2

,

where ji is the index of the subsample containing subject i. Theoretical considerations

suggest that the αk be constrained to a bounded set. Practical considerations lead to the

following constraints:
∑K

k=1 αk = 1 and αk ≥ 0 ∀k [65]. That is, a linear regression of Yi on

{m̂(−ji)
k (Xi)} without an intercept using constrained least squares. Then the super learner

estimate of m is m̂SL =
∑K

k=1 α̂km̂k.

This combination of candidate learners results in a single super learner with a

desirable oracle property [31, 65]. That is, under some general conditions, m̂SL is asymp-
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totically equivalent to an oracle estimator based on the best linear combination of the m̂k,

subject to the constraints on the αk. An oracle selector is the estimator, among the machine

learning methods considered, that minimizes risk under the true data-generating distribu-

tion. Theorem 1 in van der Laan et al. shows that the super learner performs as well

(based on expected risk difference) as the oracle selector, up to a (typically) second order

term, as long as the number of candidate learners is polynomial in sample size. Thus, the

super learner is optimal in two ways. One, if none of the candidate learners converge at

a parametric rate, the super learner performs asymptotically as well as the oracle selector

and two, if a candidate learner searches within a parametric model that contains the truth,

the super learner achieves the (almost parametric) rate of convergence log(n)/n [31].
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Appendix C

Complete Results for the

Simulation Study of Section 2.2.1
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Table C.1: Simulation results for estimating a mean outcome: empirical bias, standard devi-
ation (SD), standard error (SE), root mean squared error (RMSE), and coverage probability
(CP) in the simulation study of Section 2.2.1 where n = n∗ = 500.

Scenario Method Bias SD SE RMSE CP

OR0-PS0
µ∗ ≈ 0.16

Imputation -0.001 0.094 0.094 0.094 0.954
Weighting -0.020 0.154 0.237 0.238 0.859

DR0 -0.004 0.114 0.131 0.131 0.947
DR1 -0.005 0.106 0.124 0.124 0.928
DR2 -0.002 0.111 0.131 0.132 0.944

OR0-PS1
µ∗ ≈ 0.14

Imputation -0.009 0.095 0.095 0.096 0.945
Weighting 0.049 0.170 0.351 0.354 0.886

DR0 -0.007 0.117 0.151 0.151 0.943
DR1 -0.008 0.108 0.138 0.138 0.938
DR2 -0.005 0.116 0.149 0.149 0.949

OR1-PS0
µ∗ ≈ 0.08

Imputation -0.217 0.106 0.111 0.243 0.482
Weighting -0.024 0.181 0.350 0.351 0.798

DR0 -0.019 0.154 0.268 0.268 0.868
DR1 -0.060 0.124 0.221 0.229 0.793
DR2 -0.015 0.148 0.252 0.252 0.861

OR1-PS1
µ∗ ≈ 0.08

Imputation -0.227 0.107 0.110 0.252 0.432
Weighting 0.063 0.216 0.640 0.643 0.840

DR0 0.050 0.178 0.491 0.493 0.895
DR1 -0.030 0.139 0.422 0.423 0.806
DR2 0.015 0.166 0.299 0.299 0.887
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Table C.2: Simulation results for estimating a mean outcome: empirical bias, standard devi-
ation (SD), standard error (SE), root mean squared error (RMSE), and coverage probability
(CP) in the simulation study of Section 2.2.1 where n = n∗ = 250.

Scenario Method Bias SD SE RMSE CP

OR0-PS0
µ∗ ≈ 0.16

Imputation 0.003 0.134 0.135 0.135 0.950
Weighting -0.001 0.204 0.355 0.355 0.861

DR0 0.008 0.156 0.190 0.190 0.945
DR1 0.002 0.143 0.180 0.180 0.928
DR2 0.011 0.157 0.215 0.216 0.947

OR0-PS1
µ∗ ≈ 0.14

Imputation 0.000 0.134 0.128 0.128 0.953
Weighting 0.048 0.216 0.397 0.400 0.892

DR0 0.003 0.159 0.192 0.192 0.951
DR1 -0.002 0.146 0.178 0.178 0.949
DR2 0.003 0.161 0.215 0.215 0.955

OR1-PS0
µ∗ ≈ 0.08

Imputation -0.208 0.150 0.161 0.263 0.681
Weighting -0.006 0.233 0.518 0.518 0.805

DR0 -0.006 0.205 0.382 0.382 0.873
DR1 -0.058 0.172 0.312 0.318 0.813
DR2 0.030 0.211 0.514 0.515 0.870

OR1-PS1
µ∗ ≈ 0.08

Imputation -0.228 0.148 0.151 0.274 0.641
Weighting 0.039 0.245 0.578 0.579 0.808

DR0 0.028 0.215 0.426 0.427 0.876
DR1 -0.049 0.179 0.323 0.327 0.811
DR2 0.042 0.227 0.463 0.465 0.879
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Table C.3: Simulation results for estimating a mean outcome: empirical bias, standard devi-
ation (SD), standard error (SE), root mean squared error (RMSE), and coverage probability
(CP) in the simulation study of Section 2.2.1 where n = n∗ = 100.

Scenario Method Bias SD SE RMSE CP

OR0-PS0
µ∗ ≈ 0.16

Imputation -0.006 0.214 0.206 0.206 0.955
Weighting 0.026 0.278 0.729 0.730 0.834

DR0 -0.006 0.243 0.339 0.340 0.951
DR1 -0.012 0.203 0.295 0.295 0.908
DR2 -0.004 0.245 0.540 0.540 0.937

OR0-PS1
µ∗ ≈ 0.14

Imputation -0.009 0.214 0.216 0.216 0.951
Weighting 0.004 0.279 0.631 0.631 0.834

DR0 -0.010 0.244 0.297 0.297 0.949
DR1 -0.020 0.205 0.273 0.274 0.902
DR2 0.002 0.250 0.387 0.387 0.934

OR1-PS0
µ∗ ≈ 0.08

Imputation -0.215 0.232 0.253 0.332 0.794
Weighting 0.011 0.296 1.161 1.161 0.787

DR0 -0.024 0.286 0.790 0.790 0.874
DR1 -0.070 0.225 0.770 0.773 0.786
DR2 0.115 0.305 1.808 1.811 0.872

OR1-PS1
µ∗ ≈ 0.08

Imputation -0.234 0.231 0.242 0.336 0.779
Weighting -0.021 0.304 0.838 0.838 0.773

DR0 -0.028 0.293 0.563 0.564 0.886
DR1 -0.079 0.235 0.527 0.533 0.793
DR2 0.089 0.316 0.966 0.970 0.875
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Table C.4: Simulation results for estimating an average treatment effect: empirical bias,
standard deviation (SD), standard error (SE), root mean squared error (RMSE), and cov-
erage probability (CP) in the simulation study of Section 2.2.1 where n = n∗ = 500.

Scenario Method Bias SD SE RMSE CP

OR0-PS0
δ∗ ≈ 0.84

Imputation 0.003 0.155 0.160 0.160 0.939
Weighting 0.018 0.364 0.515 0.516 0.961

DR0 0.011 0.197 0.245 0.245 0.937
DR1 0.011 0.180 0.224 0.224 0.918
DR2 0.032 0.361 0.490 0.491 0.960

OR0-PS1
δ∗ ≈ 0.84

Imputation -0.001 0.154 0.159 0.159 0.938
Weighting 0.050 0.413 0.777 0.779 0.960

DR0 -0.001 0.207 0.267 0.267 0.939
DR1 0.000 0.183 0.233 0.233 0.922
DR2 0.018 0.381 0.645 0.645 0.949

OR1-PS0
δ∗ ≈ 1.09

Imputation -0.124 0.201 0.207 0.241 0.900
Weighting 0.011 0.433 0.751 0.751 0.954

DR0 0.002 0.309 0.526 0.526 0.953
DR1 0.004 0.241 0.410 0.410 0.923
DR2 0.038 0.423 0.709 0.710 0.955

OR1-PS1
δ∗ ≈ 1.09

Imputation -0.112 0.199 0.202 0.231 0.918
Weighting 0.055 0.517 1.394 1.395 0.958

DR0 0.000 0.351 0.968 0.968 0.939
DR1 0.002 0.263 0.893 0.893 0.945
DR2 0.039 0.465 1.074 1.074 0.966
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Table C.5: Simulation results for estimating an average treatment effect: empirical bias,
standard deviation (SD), standard error (SE), root mean squared error (RMSE), and cov-
erage probability (CP) in the simulation study of Section 2.2.1 where n = n∗ = 250.

Scenario Method Bias SD SE RMSE CP

OR0-PS0
δ∗ ≈ 0.84

Imputation 0.004 0.221 0.227 0.227 0.948
Weighting -0.020 0.474 0.809 0.809 0.948

DR0 0.005 0.271 0.342 0.342 0.930
DR1 0.005 0.234 0.324 0.324 0.892
DR2 -0.001 0.494 0.816 0.816 0.956

OR0-PS1
δ∗ ≈ 0.84

Imputation 0.005 0.220 0.233 0.233 0.930
Weighting 0.063 0.506 0.934 0.936 0.956

DR0 0.015 0.274 0.365 0.366 0.930
DR1 0.015 0.237 0.339 0.339 0.891
DR2 0.074 0.513 0.911 0.914 0.945

OR1-PS0
δ∗ ≈ 1.09

Imputation -0.110 0.281 0.294 0.314 0.913
Weighting -0.029 0.558 1.163 1.163 0.951

DR0 -0.020 0.402 0.755 0.755 0.938
DR1 -0.014 0.330 0.632 0.632 0.912
DR2 -0.021 0.578 1.194 1.194 0.964

OR1-PS1
δ∗ ≈ 1.09

Imputation -0.117 0.276 0.285 0.308 0.922
Weighting 0.066 0.593 1.331 1.332 0.947

DR0 0.002 0.421 0.855 0.855 0.930
DR1 -0.017 0.338 0.655 0.655 0.922
DR2 0.039 0.578 1.123 1.123 0.953
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Table C.6: Simulation results for estimating an average treatment effect: empirical bias,
standard deviation (SD), standard error (SE), root mean squared error (RMSE), and cov-
erage probability (CP) in the simulation study of Section 2.2.1 where n = n∗ = 100.

Scenario Method Bias SD SE RMSE CP

OR0-PS0
δ∗ ≈ 0.84

Imputation -0.006 0.362 0.367 0.367 0.946
Weighting 0.044 0.632 1.501 1.502 0.948

DR0 0.009 0.432 0.561 0.561 0.948
DR1 0.011 0.317 0.533 0.546 0.849
DR2 -0.024 0.763 2.841 2.841 0.957

OR0-PS1
δ∗ ≈ 0.84

Imputation -0.002 0.361 0.352 0.352 0.962
Weighting 0.047 0.649 1.375 1.375 0.958

DR0 -0.001 0.438 0.523 0.523 0.945
DR1 0.008 0.323 0.497 0.497 0.876
DR2 0.097 0.762 1.710 1.713 0.960

OR1-PS0
δ∗ ≈ 1.09

Imputation -0.101 0.448 0.452 0.463 0.941
Weighting 0.028 0.707 2.442 2.442 0.946

DR0 -0.001 0.577 1.542 1.542 0.949
DR1 -0.029 0.427 1.548 1.548 0.866
DR2 -0.071 0.821 4.387 4.388 0.971

OR1-PS1
δ∗ ≈ 1.09

Imputation -0.127 0.441 0.476 0.492 0.924
Weighting 0.074 0.703 2.027 2.028 0.946

DR0 -0.029 0.564 1.123 1.123 0.931
DR1 -0.009 0.435 1.078 1.078 0.865
DR2 0.095 0.824 2.457 2.459 0.956
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Table D.1: Simulation results for estimating a mean outcome: empirical bias, standard
deviation (SD), standard error (SE), root mean squared error (RMSE), and coverage prob-
ability (CP) in the simulation study of Section 2.2.2 where n = 500, n∗ = 500 (λ = 1).
Notice that results are approximately the same for each setting where n = 500.

Data Generation Method Bias SD SE RMSE CP

GLM
µ∗ ≈ 0.49

Naive -0.184 0.021 0.022 0.186 0.000
Imputation -0.002 0.042 0.041 0.041 0.948
Weighting 0.004 0.081 0.134 0.134 0.865
DR0 -0.001 0.053 0.069 0.069 0.939
DR1 (super learner) -0.003 0.038 0.049 0.049 0.867
DR1 (gam) 0.016 0.047 0.063 0.065 0.882
DR1 (rpart) 0.020 0.039 0.053 0.057 0.816
DR2 (super learner) -0.003 0.047 0.057 0.057 0.913
DR2 (gam) 0.018 0.059 0.114 0.115 0.913
DR2 (rpart) 0.034 0.075 0.061 0.070 0.934

GAM
µ∗ ≈ 0.48

Naive -0.164 0.021 0.021 0.165 0.000
Imputation 0.020 0.041 0.042 0.047 0.900
Weighting -0.004 0.074 0.112 0.112 0.842
DR0 0.014 0.053 0.062 0.064 0.920
DR1 (super learner) 0.002 0.037 0.050 0.050 0.859
DR1 (gam) -0.016 0.045 0.062 0.064 0.879
DR1 (rpart) -0.016 0.039 0.052 0.055 0.838
DR2 (super learner) 0.003 0.046 0.057 0.057 0.909
DR2 (gam) -0.015 0.059 0.088 0.089 0.933
DR2 (rpart) -0.004 0.068 0.064 0.064 0.931

RPART
µ∗ ≈ 0.45

Naive -0.110 0.021 0.022 0.112 0.000
Imputation -0.017 0.032 0.033 0.037 0.920
Weighting 0.029 0.047 0.050 0.058 0.927
DR0 -0.015 0.035 0.035 0.038 0.929
DR1 (super learner) -0.005 0.032 0.036 0.037 0.908
DR1 (gam) -0.037 0.036 0.035 0.051 0.830
DR1 (rpart) -0.055 0.034 0.042 0.069 0.625
DR2 (super learner) -0.002 0.037 0.048 0.048 0.939
DR2 (gam) -0.037 0.041 0.037 0.052 0.887
DR2 (rpart) -0.048 0.042 0.048 0.067 0.799

Super Learner
µ∗ ≈ 0.48

Naive -0.160 0.021 0.022 0.162 0.000
Imputation -0.001 0.037 0.037 0.037 0.943
Weighting 0.062 0.074 0.103 0.120 0.938
DR0 0.001 0.045 0.055 0.055 0.936
DR1 (super learner) 0.003 0.032 0.040 0.040 0.880
DR1 (gam) 0.034 0.044 0.052 0.062 0.840
DR1 (rpart) -0.016 0.035 0.045 0.047 0.840
DR2 (super learner) 0.004 0.038 0.042 0.042 0.916
DR2 (gam) 0.036 0.054 0.067 0.076 0.880
DR2 (rpart) -0.006 0.061 0.050 0.050 0.966
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Table D.2: Simulation results for estimating a mean outcome: empirical bias, standard
deviation (SD), standard error (SE), root mean squared error (RMSE), and coverage prob-
ability (CP) in the simulation study of Section 2.2.2 where n = 500, n∗ = 1500 (λ = 3).
Notice that results are approximately the same for each setting where n = 500.

Data Generation Method Bias SD SE RMSE CP

GLM
µ∗ ≈ 0.49

Naive -0.185 0.021 0.022 0.186 0.000
Imputation -0.001 0.041 0.042 0.042 0.938
Weighting 0.001 0.076 0.138 0.138 0.842
DR0 0.000 0.043 0.045 0.045 0.926
DR1 (super learner) -0.001 0.037 0.050 0.050 0.858
DR1 (gam) 0.021 0.046 0.061 0.064 0.864
DR1 (rpart) 0.021 0.039 0.052 0.056 0.829
DR2 (super learner) -0.001 0.045 0.057 0.057 0.900
DR2 (gam) 0.021 0.058 0.076 0.079 0.902
DR2 (rpart) 0.033 0.069 0.058 0.067 0.947

GAM
µ∗ ≈ 0.48

Naive -0.163 0.021 0.021 0.164 0.000
Imputation 0.024 0.041 0.042 0.049 0.902
Weighting -0.003 0.072 0.119 0.119 0.838
DR0 0.021 0.042 0.046 0.050 0.891
DR1 (super learner) 0.005 0.037 0.051 0.051 0.849
DR1 (gam) -0.016 0.045 0.063 0.065 0.887
DR1 (rpart) -0.010 0.039 0.054 0.055 0.848
DR2 (super learner) 0.004 0.046 0.060 0.060 0.902
DR2 (gam) -0.016 0.057 0.092 0.093 0.928
DR2 (rpart) -0.001 0.067 0.065 0.065 0.939

RPART
µ∗ ≈ 0.45

Naive -0.109 0.021 0.022 0.111 0.002
Imputation -0.015 0.032 0.032 0.036 0.917
Weighting 0.031 0.046 0.052 0.060 0.918
DR0 -0.014 0.032 0.033 0.036 0.917
DR1 (super learner) -0.004 0.031 0.035 0.035 0.927
DR1 (gam) -0.035 0.036 0.036 0.050 0.847
DR1 (rpart) -0.055 0.034 0.039 0.067 0.626
DR2 (super learner) 0.000 0.036 0.039 0.039 0.945
DR2 (gam) -0.034 0.041 0.038 0.051 0.887
DR2 (rpart) -0.048 0.042 0.046 0.067 0.772

Super Learner
µ∗ ≈ 0.48

Naive -0.159 0.021 0.022 0.161 0.000
Imputation 0.001 0.037 0.037 0.037 0.945
Weighting 0.051 0.072 0.100 0.112 0.939
DR0 0.000 0.038 0.039 0.039 0.941
DR1 (super learner) 0.003 0.033 0.040 0.040 0.896
DR1 (gam) 0.031 0.044 0.050 0.059 0.845
DR1 (rpart) -0.014 0.035 0.045 0.048 0.847
DR2 (super learner) 0.003 0.038 0.042 0.042 0.931
DR2 (gam) 0.031 0.054 0.065 0.072 0.887
DR2 (rpart) -0.005 0.062 0.050 0.050 0.968
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Table D.3: Simulation results for estimating a mean outcome: empirical bias, standard devi-
ation (SD), standard error (SE), root mean squared error (RMSE), and coverage probability
(CP) in the simulation study of Section 2.2.2 where n = 1500, n∗ = 500 (λ = 1/3).

Data Generation Method Bias SD SE RMSE CP

GLM
µ∗ ≈ 0.49

Naive -0.184 0.012 0.013 0.185 0.000
Imputation 0.000 0.024 0.025 0.025 0.934
Weighting 0.004 0.047 0.100 0.100 0.764
DR0 0.002 0.065 0.083 0.083 0.945
DR1 (super learner) -0.001 0.023 0.029 0.029 0.881
DR1 (gam) 0.019 0.030 0.036 0.041 0.865
DR1 (rpart) 0.022 0.023 0.033 0.040 0.726
DR2 (super learner) -0.001 0.024 0.030 0.030 0.889
DR2 (gam) 0.020 0.032 0.039 0.044 0.876
DR2 (rpart) 0.026 0.036 0.032 0.041 0.914

GAM
µ∗ ≈ 0.48

Naive -0.164 0.012 0.013 0.165 0.000
Imputation 0.024 0.023 0.024 0.033 0.821
Weighting -0.003 0.042 0.083 0.083 0.760
DR0 -0.011 0.065 0.092 0.093 0.942
DR1 (super learner) 0.001 0.022 0.027 0.027 0.885
DR1 (gam) -0.018 0.029 0.038 0.042 0.917
DR1 (rpart) -0.015 0.023 0.034 0.037 0.771
DR2 (super learner) 0.000 0.024 0.028 0.028 0.901
DR2 (gam) -0.019 0.032 0.044 0.048 0.930
DR2 (rpart) -0.010 0.036 0.033 0.034 0.939

RPART
µ∗ ≈ 0.45

Naive -0.110 0.012 0.013 0.111 0.000
Imputation -0.017 0.018 0.021 0.027 0.806
Weighting 0.029 0.026 0.034 0.044 0.765
DR0 -0.009 0.029 0.034 0.035 0.914
DR1 (super learner) -0.002 0.019 0.022 0.022 0.905
DR1 (gam) -0.036 0.021 0.023 0.043 0.585
DR1 (rpart) -0.049 0.020 0.024 0.055 0.353
DR2 (super learner) -0.002 0.020 0.022 0.022 0.922
DR2 (gam) -0.036 0.022 0.023 0.043 0.628
DR2 (rpart) -0.048 0.021 0.023 0.054 0.403

Super Learner
µ∗ ≈ 0.48

Naive -0.160 0.012 0.014 0.161 0.000
Imputation 0.000 0.021 0.022 0.022 0.946
Weighting 0.054 0.041 0.070 0.088 0.779
DR0 -0.003 0.052 0.067 0.067 0.932
DR1 (super learner) 0.004 0.019 0.023 0.023 0.888
DR1 (gam) 0.032 0.027 0.030 0.044 0.748
DR1 (rpart) -0.013 0.020 0.026 0.029 0.817
DR2 (super learner) 0.004 0.020 0.023 0.023 0.896
DR2 (gam) 0.032 0.029 0.032 0.045 0.771
DR2 (rpart) -0.011 0.032 0.025 0.027 0.973
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Table D.4: Simulation results for estimating a mean outcome: empirical bias, standard
deviation (SD), standard error (SE), root mean squared error (RMSE), and coverage prob-
ability (CP) in the simulation study of Section 2.2.2 where n = 500, n∗ = 10000 (λ = 20).
Notice that results are approximately the same for each setting where n = 500.

Data Generation Method Bias SD SE RMSE CP

GLM
µ∗ ≈ 0.49

Naive -0.184 0.021 0.021 0.185 0.000
Imputation -0.001 0.041 0.042 0.042 0.958
Weighting -0.002 0.078 0.136 0.136 0.848
DR0 -0.001 0.041 0.043 0.043 0.956
DR1 (super learner) -0.003 0.037 0.050 0.050 0.862
DR1 (gam) 0.016 0.046 0.064 0.066 0.872
DR1 (rpart) 0.021 0.039 0.055 0.055 0.897
DR2 (super learner) -0.003 0.045 0.055 0.055 0.897
DR2 (gam) 0.016 0.058 0.098 0.100 0.902
DR2 (rpart) 0.036 0.069 0.063 0.072 0.914

GAM
µ∗ ≈ 0.48

Naive -0.164 0.021 0.022 0.165 0.000
Imputation 0.022 0.041 0.042 0.048 0.899
Weighting -0.007 0.073 0.106 0.106 0.861
DR0 0.021 0.041 0.042 0.047 0.900
DR1 (super learner) 0.003 0.037 0.050 0.050 0.874
DR1 (gam) -0.017 0.046 0.062 0.064 0.901
DR1 (rpart) -0.013 0.038 0.057 0.058 0.812
DR2 (super learner) 0.002 0.046 0.056 0.056 0.915
DR2 (gam) -0.022 0.058 0.113 0.115 0.936
DR2 (rpart) -0.005 0.068 0.066 0.066 0.944

RPART
µ∗ ≈ 0.45

Naive -0.108 0.021 0.022 0.110 0.002
Imputation -0.016 0.032 0.033 0.037 0.899
Weighting 0.031 0.046 0.050 0.059 0.914
DR0 -0.015 0.031 0.033 0.037 0.895
DR1 (super learner) -0.003 0.032 0.036 0.036 0.909
DR1 (gam) -0.035 0.035 0.036 0.050 0.839
DR1 (rpart) -0.054 0.035 0.040 0.067 0.638
DR2 (super learner) 0.002 0.037 0.040 0.040 0.944
DR2 (gam) -0.034 0.041 0.038 0.051 0.894
DR2 (rpart) -0.046 0.042 0.045 0.064 0.786

Super Learner
µ∗ ≈ 0.48

Naive -0.161 0.021 0.022 0.162 0.000
Imputation -0.003 0.037 0.037 0.037 0.946
Weighting 0.060 0.024 0.110 0.125 0.932
DR0 -0.003 0.037 0.037 0.037 0.948
DR1 (super learner) 0.000 0.033 0.040 0.040 0.888
DR1 (gam) 0.030 0.044 0.052 0.060 0.874
DR1 (rpart) -0.017 0.035 0.045 0.048 0.847
DR2 (super learner) 0.001 0.039 0.042 0.042 0.931
DR2 (gam) 0.030 0.055 0.074 0.080 0.901
DR2 (rpart) -0.008 0.062 0.053 0.053 0.955
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Table D.5: Simulation results for estimating a mean outcome, unknown PS model: empirical
bias, standard deviation (SD), standard error (SE), root mean squared error (RMSE), and
coverage probability (CP) in the simulation study of Section 2.2.2 where n = n∗ = 104.

Data Generation Method Bias SD SE RMSE CP

GLM
µ∗ ≈ 0.49

Naive -0.179 0.005 0.004 0.179 0.000
Imputation 0.000 0.009 0.009 0.009 0.950
Weighting -0.060 0.015 0.015 0.062 0.036
DR0 0.000 0.012 0.012 0.012 0.952
DR1 (super learner) 0.000 0.007 0.010 0.010 0.858
DR1 (gam) 0.022 0.013 0.013 0.025 0.610
DR1 (rpart) -0.019 0.008 0.012 0.022 0.422
DR2 (super learner) 0.000 0.007 0.010 0.010 0.860
DR2 (gam) 0.022 0.013 0.013 0.025 0.610
DR2 (rpart) -0.019 0.013 0.011 0.022 0.772

GAM
µ∗ ≈ 0.47

Naive -0.153 0.005 0.005 0.153 0.000
Imputation 0.030 0.009 0.009 0.031 0.062
Weighting -0.032 0.015 0.015 0.035 0.400
DR0 0.028 0.011 0.011 0.030 0.308
DR1 (super learner) -0.005 0.007 0.010 0.011 0.810
DR1 (gam) -0.014 0.012 0.012 0.018 0.784
DR1 (rpart) 0.002 0.008 0.014 0.014 0.728
DR2 (super learner) -0.005 0.007 0.010 0.011 0.804
DR2 (gam) -0.014 0.012 0.012 0.019 0.792
DR2 (rpart) 0.003 0.013 0.013 0.013 0.934

RPART
µ∗ ≈ 0.49

Naive -0.201 0.005 0.004 0.201 0.000
Imputation -0.034 0.009 0.010 0.036 0.044
Weighting -0.071 0.016 0.015 0.073 0.006
DR0 -0.014 0.012 0.012 0.019 0.786
DR1 (super learner) -0.002 0.007 0.009 0.009 0.848
DR1 (gam) -0.036 0.013 0.014 0.039 0.240
DR1 (rpart) -0.004 0.008 0.010 0.011 0.806
DR2 (super learner) -0.003 0.007 0.009 0.009 0.868
DR2 (gam) -0.036 0.013 0.014 0.039 0.240
DR2 (rpart) -0.005 0.012 0.010 0.011 0.974

Super Learner
µ∗ ≈ 0.49

Naive -0.178 0.005 0.005 0.178 0.000
Imputation -0.001 0.009 0.008 0.009 0.966
Weighting -0.057 0.015 0.015 0.059 0.058
DR0 0.003 0.012 0.011 0.012 0.960
DR1 (super learner) 0.011 0.007 0.009 0.015 0.650
DR1 (gam) -0.008 0.012 0.012 0.015 0.906
DR1 (rpart) -0.018 0.008 0.011 0.021 0.452
DR2 (super learner) 0.011 0.007 0.009 0.015 0.650
DR2 (gam) -0.008 0.013 0.012 0.015 0.906
DR2 (rpart) -0.018 0.013 0.010 0.021 0.766
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Table D.6: Simulation results for estimating a treatment effect: empirical bias, standard
deviation (SD), standard error (SE), root mean squared error (RMSE), and coverage prob-
ability (CP) in the simulation study of Section 2.2.2 where n = n∗ = 500 (λ = 1). Notice
that results are approximately the same for each setting where n = 500.

Data Generation Method Bias SD SE RMSE CP

GLM
δ∗ ≈ 0.24

Naive 0.058 0.043 0.042 0.072 0.730
Imputation -0.002 0.077 0.078 0.078 0.939
Weighting -0.005 0.216 0.295 0.295 0.945
DR0 -0.004 0.098 0.124 0.124 0.936
DR1 (super learner) -0.002 0.067 0.094 0.094 0.850
DR1 (gam) -0.010 0.084 0.115 0.116 0.884
DR1 (rpart) 0.002 0.079 0.099 0.099 0.888
DR2 (super learner) 0.001 0.109 0.138 0.138 0.933
DR2 (gam) -0.029 0.145 0.282 0.283 0.943
DR2 (rpart) 0.027 0.122 0.120 0.123 0.957

GAM
δ∗ ≈ 0.25

Naive 0.049 0.043 0.043 0.065 0.787
Imputation -0.013 0.076 0.076 0.077 0.950
Weighting -0.007 0.192 0.264 0.264 0.948
DR0 -0.008 0.098 0.114 0.114 0.948
DR1 (super learner) 0.010 0.066 0.090 0.090 0.864
DR1 (gam) 0.004 0.083 0.111 0.111 0.899
DR1 (rpart) -0.005 0.081 0.102 0.102 0.885
DR2 (super learner) 0.026 0.106 0.126 0.129 0.927
DR2 (gam) 0.007 0.142 0.255 0.255 0.946
DR2 (rpart) 0.040 0.125 0.124 0.131 0.950

RPART
δ∗ ≈ 0.24

Naive 0.043 0.043 0.043 0.061 0.826
Imputation 0.007 0.062 0.061 0.061 0.950
Weighting 0.010 0.131 0.132 0.132 0.960
DR0 -0.009 0.069 0.068 0.069 0.953
DR1 (super learner) 0.003 0.062 0.070 0.070 0.916
DR1 (gam) -0.003 0.070 0.068 0.068 0.958
DR1 (rpart) -0.006 0.074 0.084 0.084 0.925
DR2 (super learner) 0.000 0.084 0.089 0.089 0.953
DR2 (gam) -0.009 0.095 0.091 0.091 0.962
DR2 (rpart) -0.003 0.100 0.106 0.106 0.959

Super Learner
δ∗ ≈ 0.23

Naive 0.066 0.043 0.043 0.079 0.632
Imputation 0.010 0.069 0.067 0.068 0.948
Weighting 0.019 0.195 0.229 0.230 0.958
DR0 -0.008 0.087 0.107 0.107 0.963
DR1 (super learner) -0.015 0.059 0.073 0.075 0.898
DR1 (gam) -0.011 0.081 0.100 0.101 0.945
DR1 (rpart) 0.005 0.071 0.086 0.086 0.899
DR2 (super learner) -0.011 0.087 0.090 0.090 0.960
DR2 (gam) -0.026 0.131 0.175 0.177 0.966
DR2 (rpart) 0.034 0.102 0.108 0.113 0.935
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Table D.7: Simulation results for estimating a treatment effect: empirical bias, standard
deviation (SD), standard error (SE), root mean squared error (RMSE), and coverage prob-
ability (CP) in the simulation study of Section 2.2.2 where n = 500, n∗ = 1500 (λ = 3).
Notice that results are approximately the same for each setting where n = 500.

Data Generation Method Bias SD SE RMSE CP

GLM
δ∗ ≈ 0.24

Naive 0.056 0.043 0.043 0.070 0.730
Imputation -0.001 0.077 0.076 0.076 0.955
Weighting 0.010 0.209 0.272 0.272 0.958
DR0 -0.004 0.097 0.122 0.122 0.948
DR1 (super learner) -0.003 0.066 0.090 0.090 0.854
DR1 (gam) -0.012 0.081 0.114 0.115 0.897
DR1 (rpart) 0.002 0.080 0.100 0.100 0.883
DR2 (super learner) 0.010 0.106 0.128 0.128 0.949
DR2 (gam) -0.003 0.140 0.243 0.243 0.957
DR2 (rpart) 0.042 0.121 0.124 0.130 0.944

GAM
δ∗ ≈ 0.25

Naive 0.050 0.043 0.043 0.066 0.788
Imputation -0.016 0.076 0.075 0.077 0.951
Weighting -0.013 0.193 0.264 0.264 0.947
DR0 -0.010 0.097 0.121 0.121 0.942
DR1 (super learner) 0.007 0.066 0.091 0.091 0.856
DR1 (gam) 0.005 0.081 0.117 0.117 0.882
DR1 (rpart) -0.010 0.082 0.101 0.102 0.899
DR2 (super learner) 0.017 0.107 0.128 0.129 0.935
DR2 (gam) -0.008 0.141 0.237 0.237 0.944
DR2 (rpart) 0.025 0.127 0.133 0.135 0.953

RPART
δ∗ ≈ 0.24

Naive 0.041 0.043 0.043 0.059 0.837
Imputation 0.000 0.062 0.064 0.064 0.938
Weighting 0.003 0.129 0.133 0.133 0.954
DR0 -0.014 0.069 0.071 0.073 0.941
DR1 (super learner) -0.002 0.062 0.072 0.072 0.915
DR1 (gam) -0.008 0.070 0.071 0.071 0.948
DR1 (rpart) -0.008 0.074 0.086 0.086 0.925
DR2 (super learner) -0.009 0.084 0.102 0.103 0.949
DR2 (gam) -0.015 0.094 0.094 0.096 0.952
DR2 (rpart) -0.011 0.099 0.105 0.105 0.954

Super Learner
δ∗ ≈ 0.23

Naive 0.065 0.043 0.043 0.078 0.683
Imputation 0.008 0.068 0.068 0.068 0.942
Weighting 0.001 0.190 0.227 0.227 0.957
DR0 -0.006 0.085 0.099 0.099 0.948
DR1 (super learner) -0.017 0.058 0.073 0.075 0.878
DR1 (gam) -0.012 0.069 0.093 0.094 0.933
DR1 (rpart) 0.003 0.070 0.081 0.081 0.927
DR2 (super learner) -0.015 0.087 0.091 0.093 0.947
DR2 (gam) -0.031 0.127 0.174 0.177 0.953
DR2 (rpart) 0.032 0.102 0.097 0.102 0.956
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Table D.8: Simulation results for estimating a treatment effect: empirical bias, standard
deviation (SD), standard error (SE), root mean squared error (RMSE), and coverage prob-
ability (CP) in the simulation study of Section 2.2.2 where n = 1500, n∗ = 500 (λ = 1/3).

Data Generation Method Bias SD SE RMSE CP

GLM
δ∗ ≈ 0.24

Naive 0.058 0.025 0.025 0.063 0.357
Imputation 0.000 0.043 0.042 0.042 0.955
Weighting 0.003 0.125 0.154 0.154 0.943
DR0 -0.001 0.057 0.069 0.069 0.948
DR1 (super learner) -0.001 0.042 0.051 0.051 0.895
DR1 (gam) -0.008 0.054 0.067 0.067 0.937
DR1 (rpart) 0.006 0.045 0.059 0.059 0.877
DR2 (super learner) 0.011 0.056 0.064 0.065 0.924
DR2 (gam) -0.005 0.077 0.102 0.102 0.941
DR2 (rpart) 0.035 0.056 0.058 0.068 0.888

GAM
δ∗ ≈ 0.25

Naive 0.049 0.025 0.025 0.055 0.511
Imputation -0.013 0.042 0.040 0.042 0.942
Weighting -0.005 0.114 0.142 0.142 0.939
DR0 -0.008 0.057 0.070 0.070 0.946
DR1 (super learner) 0.011 0.041 0.052 0.053 0.886
DR1 (gam) 0.005 0.054 0.070 0.070 0.930
DR1 (rpart) -0.006 0.046 0.057 0.057 0.870
DR2 (super learner) 0.022 0.056 0.062 0.066 0.917
DR2 (gam) 0.005 0.076 0.103 0.103 0.943
DR2 (rpart) 0.033 0.057 0.057 0.066 0.919

RPART
δ∗ ≈ 0.24

Naive 0.044 0.025 0.026 0.051 0.576
Imputation 0.006 0.035 0.034 0.035 0.947
Weighting 0.009 0.073 0.073 0.074 0.955
DR0 -0.010 0.039 0.039 0.040 0.937
DR1 (super learner) 0.004 0.037 0.042 0.042 0.919
DR1 (gam) -0.004 0.041 0.039 0.039 0.972
DR1 (rpart) 0.001 0.043 0.049 0.049 0.916
DR2 (super learner) 0.001 0.047 0.050 0.050 0.937
DR2 (gam) -0.009 0.050 0.048 0.049 0.964
DR2 (rpart) 0.000 0.052 0.056 0.056 0.948

Super Learner
δ∗ ≈ 0.23

Naive 0.066 0.025 0.026 0.071 0.241
Imputation 0.010 0.038 0.041 0.042 0.923
Weighting 0.007 0.111 0.122 0.122 0.960
DR0 -0.004 0.050 0.058 0.058 0.949
DR1 (super learner) -0.017 0.035 0.044 0.047 0.863
DR1 (gam) -0.010 0.051 0.057 0.058 0.953
DR1 (rpart) 0.000 0.039 0.047 0.047 0.906
DR2 (super learner) -0.007 0.045 0.050 0.050 0.933
DR2 (gam) -0.018 0.069 0.078 0.080 0.957
DR2 (rpart) 0.040 0.047 0.046 0.061 0.875
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Table D.9: Simulation results for estimating a treatment effect: empirical bias, standard
deviation (SD), standard error (SE), root mean squared error (RMSE), and coverage prob-
ability (CP) in the simulation study of Section 2.2.2 where n = 500, n∗ = 10000 (λ = 20).
Notice that results are approximately the same for each setting where n = 500.

Data Generation Method Bias SD SE RMSE CP

GLM
δ∗ ≈ 0.24

Naive 0.056 0.043 0.043 0.070 0.717
Imputation -0.003 0.076 0.074 0.074 0.959
Weighting 0.001 0.208 0.291 0.291 0.946
DR0 -0.005 0.098 0.122 0.122 0.938
DR1 (super learner) -0.003 0.066 0.088 0.088 0.862
DR1 (gam) -0.013 0.082 0.111 0.112 0.892
DR1 (rpart) -0.001 0.079 0.100 0.100 0.898
DR2 (super learner) 0.002 0.106 0.137 0.137 0.933
DR2 (gam) -0.023 0.141 0.244 0.245 0.946
DR2 (rpart) 0.024 0.120 0.121 0.124 0.967

GAM
δ∗ ≈ 0.25

Naive 0.050 0.043 0.043 0.066 0.787
Imputation -0.014 0.075 0.076 0.078 0.950
Weighting 0.001 0.197 0.256 0.257 0.948
DR0 -0.009 0.096 0.111 0.111 0.948
DR1 (super learner) 0.010 0.065 0.092 0.093 0.864
DR1 (gam) 0.006 0.080 0.111 0.111 0.899
DR1 (rpart) -0.007 0.080 0.101 0.101 0.885
DR2 (super learner) 0.022 0.106 0.136 0.138 0.927
DR2 (gam) 0.005 0.144 0.255 0.256 0.946
DR2 (rpart) 0.041 0.122 0.122 0.129 0.950

RPART
δ∗ ≈ 0.24

Naive 0.044 0.043 0.043 0.062 0.824
Imputation 0.005 0.061 0.060 0.060 0.958
Weighting 0.014 0.129 0.135 0.136 0.948
DR0 -0.011 0.068 0.067 0.068 0.960
DR1 (super learner) 0.003 0.062 0.069 0.069 0.920
DR1 (gam) -0.003 0.069 0.067 0.067 0.958
DR1 (rpart) -0.006 0.075 0.084 0.084 0.935
DR2 (super learner) -0.005 0.085 0.087 0.087 0.950
DR2 (gam) -0.011 0.093 0.090 0.091 0.962
DR2 (rpart) -0.006 0.100 0.105 0.105 0.963

Super Learner
δ∗ ≈ 0.23

Naive 0.067 0.043 0.044 0.080 0.646
Imputation 0.008 0.068 0.069 0.069 0.942
Weighting 0.002 0.195 0.229 0.229 0.961
DR0 -0.008 0.087 0.114 0.115 0.947
DR1 (super learner) -0.018 0.060 0.077 0.079 0.890
DR1 (gam) -0.016 0.082 0.111 0.112 0.928
DR1 (rpart) 0.001 0.071 0.088 0.088 0.889
DR2 (super learner) -0.009 0.088 0.096 0.097 0.948
DR2 (gam) -0.031 0.134 0.187 0.189 0.950
DR2 (rpart) 0.038 0.103 0.100 0.107 0.936
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Table D.10: Simulation results for estimating a treatment effect, unknown PS model: empir-
ical bias, standard deviation (SD), standard error (SE), root mean squared error (RMSE),
and coverage probability (CP) in the simulation study of Section 2.2.2 where n = n∗ = 104

(λ = 1).

Data Generation Method Bias SD SE RMSE CP

GLM
δ∗ ≈ 0.24

Naive 0.057 0.010 0.009 0.057 0.000
Imputation 0.000 0.016 0.015 0.015 0.962
Weighting 0.041 0.041 0.041 0.058 0.838
DR0 0.001 0.022 0.021 0.021 0.952
DR1 (super learner) 0.000 0.013 0.017 0.017 0.892
DR1 (gam) -0.009 0.024 0.022 0.024 0.954
DR1 (rpart) 0.027 0.017 0.021 0.034 0.610
DR2 (super learner) 0.023 0.016 0.018 0.029 0.686
DR2 (gam) 0.034 0.029 0.028 0.044 0.788
DR2 (rpart) 0.078 0.018 0.018 0.080 0.006

GAM
δ∗ ≈ 0.25

Naive 0.041 0.010 0.009 0.042 0.008
Imputation -0.019 0.015 0.016 0.025 0.754
Weighting 0.022 0.042 0.044 0.049 0.908
DR0 -0.019 0.022 0.022 0.029 0.842
DR1 (super learner) 0.013 0.013 0.018 0.022 0.730
DR1 (gam) 0.004 0.023 0.023 0.024 0.950
DR1 (rpart) -0.026 0.017 0.023 0.035 0.618
DR2 (super learner) 0.032 0.016 0.019 0.037 0.516
DR2 (gam) 0.041 0.029 0.029 0.050 0.728
DR2 (rpart) 0.028 0.018 0.019 0.034 0.664

RPART
δ∗ ≈ 0.20

Naive 0.114 0.009 0.009 0.115 0.000
Imputation 0.056 0.017 0.016 0.058 0.084
Weighting 0.049 0.041 0.041 0.064 0.778
DR0 0.016 0.024 0.024 0.029 0.902
DR1 (super learner) 0.003 0.013 0.015 0.016 0.910
DR1 (gam) 0.007 0.026 0.026 0.027 0.930
DR1 (rpart) -0.030 0.017 0.018 0.035 0.570
DR2 (super learner) 0.062 0.016 0.017 0.064 0.040
DR2 (gam) 0.034 0.028 0.028 0.045 0.766
DR2 (rpart) 0.104 0.020 0.018 0.105 0.000

Super Learner
δ∗ ≈ 0.23

Naive 0.071 0.010 0.009 0.072 0.000
Imputation 0.011 0.016 0.016 0.020 0.882
Weighting 0.039 0.041 0.040 0.056 0.844
DR0 0.001 0.022 0.022 0.022 0.946
DR1 (super learner) -0.024 0.014 0.018 0.030 0.572
DR1 (gam) 0.028 0.024 0.024 0.036 0.792
DR1 (rpart) -0.007 0.017 0.020 0.021 0.906
DR2 (super learner) 0.006 0.016 0.018 0.019 0.880
DR2 (gam) 0.069 0.029 0.029 0.075 0.334
DR2 (rpart) 0.062 0.018 0.018 0.065 0.084

107



Appendix E

Complete Results for the

Simulation Studies of Section 3.2

Table E.1: Sensitivity analysis results for the mean outcome estimation, modified imputa-
tion method: target parameter (µ∗α), difference between target parameter under α and target
parameter under the ignorability assumption (µ∗α − µ∗0), empirical bias, standard deviation
(SD), root mean squared error (RMSE), and coverage probability (CP) for n = n∗ = 1000.

Data Generation α µ∗α µ∗α − µ∗ Bias SD RMSE CP

GAM

-1 0.272 -0.192 0.012 0.027 0.031 0.906
-0.5 0.363 -0.100 0.029 0.028 0.041 0.792

0 0.464 - 0.037 0.029 0.047 0.739
0.5 0.565 0.101 0.042 0.030 0.053 0.694
1 0.655 0.191 0.058 0.031 0.066 0.546

RPART

-1 0.281 -0.154 -0.075 0.019 0.078 0.052
-0.5 0.357 -0.078 -0.039 0.021 0.045 0.524

0 0.435 - -0.005 0.022 0.024 0.935
0.5 0.516 0.081 0.026 0.024 0.037 0.773
1 0.598 0.163 0.053 0.025 0.060 0.451

Super Learner

-1 0.287 -0.189 -0.014 0.023 0.028 0.902
-0.5 0.377 -0.098 0.006 0.024 0.027 0.921

0 0.476 - 0.015 0.025 0.030 0.898
0.5 0.574 0.098 0.026 0.027 0.038 0.828
1 0.663 0.187 0.043 0.028 0.052 0.662
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Table E.2: Sensitivity analysis results for the mean outcome estimation, modified weighting
method: target parameter (µ∗α), difference between target parameter under α and target
parameter under the ignorability assumption (µ∗α − µ∗0), empirical bias, standard deviation
(SD), root mean squared error (RMSE), and coverage probability (CP) for n = n∗ = 1000.

Data Generation α µ∗α µ∗α − µ∗ Bias SD RMSE CP

GAM

-1. 0.272 -0.192 0.042 0.041 0.086 0.876
-0.5 0.363 -0.100 0.017 0.045 0.078 0.866

0 0.464 - 0.016 0.052 0.099 0.839
0.5 0.565 0.101 0.019 0.059 0.099 0.858
1 0.655 0.191 0.066 0.065 0.131 0.832

RPART

-1 0.281 -0.154 0.026 0.028 0.042 0.856
-0.5 0.357 -0.078 0.023 0.030 0.042 0.871

0 0.435 - 0.041 0.031 0.056 0.754
0.5 0.516 0.081 0.085 0.034 0.094 0.317
1 0.598 0.163 0.164 0.037 0.169 0.005

Super Learner

-1 0.287 -0.189 0.100 0.045 0.126 0.555
-0.5 0.377 -0.098 0.079 0.048 0.111 0.723

0 0.476 - 0.073 0.051 0.111 0.776
0.5 0.574 0.098 0.092 0.055 0.127 0.722
1 0.663 0.187 0.145 0.060 0.176 0.447
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Table E.3: Sensitivity analysis results for treatment effect estimation, modified imputation
method: target parameter (δ∗α), difference between target parameter under α and target
parameter under the ignorability assumption (δ∗α − δ∗0), empirical bias, standard deviation
(SD), root mean squared error (RMSE), and coverage probability (CP) for n = n∗ = 1000.

Data Generation α δ∗α δ∗α − δ∗ Bias SD RMSE CP

GAM

-1 -1.425 -1.693 -0.241 0.105 0.261 0.355
-0.5 -0.816 -1.085 -0.100 0.086 0.132 0.770

0 0.268 - -0.037 0.053 0.064 0.881
0.5 1.226 0.958 0.192 0.062 0.202 0.122
1 1.690 1.422 0.534 0.068 0.539 0.000

RPART

-1 -1.416 -1.633 -0.126 0.088 0.152 0.683
-0.5 -0.789 -1.006 -0.002 0.069 0.067 0.936

0 0.217 - 0.026 0.043 0.050 0.895
0.5 1.135 0.919 0.159 0.051 0.167 0.143
1 1.633 1.416 0.442 0.057 0.445 0.000

Super Learner

-1 -1.588 -1.840 -0.584 0.095 0.591 0.000
-0.5 -0.790 -1.041 -0.079 0.077 0.110 0.815

0 0.251 - -0.008 0.047 0.047 0.937
0.5 1.205 0.953 0.188 0.057 0.196 0.092
1 1.676 1.424 0.516 0.060 0.519 0.000

Table E.4: Sensitivity analysis results for treatment effect estimation, modified weighting
method: target parameter (δ∗α), difference between target parameter under α and target
parameter under the ignorability assumption (δ∗α − δ∗0), empirical bias, standard deviation
(SD), root mean squared error (RMSE), and coverage probability (CP) for n = n∗ = 1000.

Data Generation α δ∗α δ∗α − δ∗ Bias SD RMSE CP

GAM

-1 -1.425 -1.693 0.218 0.232 0.275 0.626
-0.5 -0.816 -1.085 0.063 0.221 0.168 0.836

0 0.268 - -0.028 0.179 0.144 0.890
0.5 1.226 0.958 -0.092 0.213 0.179 0.825
1 1.690 1.422 -0.364 0.213 0.392 0.276

RPART

-1 -1.416 -1.633 0.034 0.118 0.117 0.928
-0.5 -0.789 -1.006 -0.018 0.109 0.106 0.938

0 0.217 - 0.027 0.092 0.029 0.930
0.5 1.135 0.919 0.063 0.101 0.115 0.882
1 1.633 1.416 -0.140 0.100 0.170 0.677

Super Learner

-1 -1.588 -1.840 0.272 0.217 0.312 0.605
-0.5 -0.790 -1.041 -0.047 0.202 0.160 0.864

0 0.251 - -0.005 0.167 0.137 0.902
0.5 1.205 0.953 0.038 0.193 0.149 0.890
1 1.676 1.424 -0.237 0.193 0.272 0.471
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Appendix F

Alternate Simulation Settings

F.1 First Alternate Setting: Mean Outcome Adjustment

Simulations were run under the following approach for 103 simulated datasets:

with n∗ and n fixed, X∗ and X are generated separately. Under all simulation settings,

X ∼MVN3(0, I) and X∗ ∼MVN3(µ,Σ). Varying µ and Σ produces a variety of different

simulation settings to examine misspecification under the outcome regression and propensity

score models. µ 6= 0 represents some systematic difference between the historical and current

populations. In all cases, µ = (0.5, 0.5, 0.5)′. Σ 6= I reflects some misspecification in the

logistic regression used in the propensity score model.
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With X∗ and X generated, Y is generated on the basis of X

Y =



X1 +X2 +X3 + ε (OR0)

X1 + 0.5X2
1 +X2 +X3 + ε (OR1)

X1 +X2 − 0.25X1X2 +X3 + ε (OR2)

where in all cases, ε ∼ N(0, 1). The working model is such that E(Y |X) = α0 +αT1X
∗ and

is misspecified for OR1 and OR2.

Now consider the propensity score model. Let X ∼ f and X∗ ∼ f∗ represent the

MVN3 settings described above. Now let π = n∗

n∗+n . Then

p(x) =
πf∗(x)

πf∗(x) + (1− π)f(x)

and

logit[p(x)] = logit(π) + log(f∗(x))− log(f(x)).

The following scenarios are considered:

Σ =



I (PS0)

diag(1.5, 1, 1) (PS1)

1 ρ ρ

ρ 1 ρ

ρ ρ 1


(PS2)
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where ρ = 0.4. In general, for Σ 6= I, logit(PS) is quadratic in X, which is not specifically

accounted for in the model. That is, the model is misspecified for PS1 and PS2.

From each outcome regression setting, we calculate the true mean of Y ∗ in the

current study. This is our target parameter for estimation. Depending on the complexity of

the expectation, these are calculated either manually or numerically. Specifically, the true

mean of Y ∗ for OR2 under PS2 is calculated numerically.

These lend themselves to 9 different simulation settings. Each simulated dataset

is analyzed using five different methods: imputation, weighting, DR0, DR1, and DR2. The

super learner library includes a means model, generalized linear model, generalized additive

model, recursive partitioning, random forest, and multivariate adaptive polynomial spline

regression.

Initial results for n = n∗ = 1000 may be found in the tables below. The different

methods are compared in terms of empirical bias, bootstrapped standard deviation (SD),

standard error (SE) based on asymptotic variance, and coverage probability for 95% Wald

confidence intervals (CP).
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F.2 Second Alternate Setting

All simulations are run for 103 simulated datasets with n∗ and n fixed (n∗ = n =

1000). Bivariate covariate data were generated as X1 ∼ Normal(0, 1), X∗1 ∼ Normal(0.5,

0.752), X2 ∼ Bernoulli(0.5), and X∗2 ∼ Bernoulli(0.25), all independent of one another.

Randomized treatments are also simulated as T ∼ Bernoulli(0.5) [T ∗ − 1 ∼ Bernoulli(0.5)],

independent of X = (X1, X2)
′ [X∗ = (X∗1 , X

∗
2 )′] and binary outcomes Y ∗ and Y are simu-

lated following the logistic models

P (Y ∗ = 1|T ∗ = t,X∗ = X∗) = expit{(1, x∗1, x∗2, x∗1x∗2)β∗t } (F.1)

and

P (Y = 1|T = t,X = x) = expit{(1, x1, x2, x1x2)βt}, (F.2)

respectively, with expit(u) = exp(u)/[1 + exp(u)] and β1 = β∗2 = (0.5,−0.5,−0.5, 0.5)′ =

−β0 = −β∗1. The true value of µ∗ is 0.466 and the true value of δ∗ = µ∗1 − µ∗0 is found

numerically to be 0.09.

Each simulated dataset was analyzed using five different methods: imputation,

weighting, DR0, DR1, and DR2. Methods DR1 and DR2 are further separated into two

approaches each using direct and indirect approximation of the nuisance functions d and

h. In all cases, the correct outcome regression model is given by OR0 and misspecified

models are obtained by (OR1) replacing x1 with expit(x1) and by (OR2) further omitting

the interaction term, expit(x1)x2, from OR1.
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P (Y = 1|T = t,X = x) =



expit{[1, x1, x2, x1x2]βt} (OR0)

expit{[1, expit(x1), x2, expit(x1)x2]βt} (OR1)

expit{[1, expit(x1), x2]βt} (OR2)

The correct propensity score model is given by PS0, where the quadratic term is

necessary due to the different variances between X∗1 and X1. A mild misspecification (PS1)

is obtained by replacing x1 in PS0 with expit(x1) and a severe misspecification (PS2) by

further omitting the quadratic term, expit(x22), from PS1.

p(x; γ) =



expit{[1, x1, x21, x2]γ} (PS0)

expit{[1, expit(x1), expit(x1)
2, x2]γ} (PS1)

expit{[1, expit(x1), x2]γ} (PS2)

The super learner library includes a means model, generalized linear model, gen-

eralized additive model, recursive partitioning, random forest, and multivariate adaptive

polynomial spline regression.

Results for n∗ = n = 1000 may be found in the tables below. The different meth-

ods are compared in terms of empirical bias, standard deviation (SD), root mean squared

error (RMSE), standard error (SE) based on bootstrap (parametric methods) or asymptotic

variance (DR1 and DR2), and coverage probability (CP) for 95% Wald confidence intervals.
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Table F.1: Results: first alternate setting, mean outcome adjustment.

Method µ∗ OR PS Bias SD SE CP
IM 1.5 0 0 0.002 0.069 0.055 0.878
WT 1.5 0 0 0.001 0.124 0.150 0.985
DR0 1.5 0 0 0.002 0.073 0.071 0.951
DR1 1.5 0 0 -0.008 0.075 0.068 0.927
DR2 1.5 0 0 -0.061 0.147 0.155 0.946
IM 2.125 1 0 -0.126 0.076 0.055 0.397
WT 2.125 1 0 -0.005 0.160 0.196 0.982
DR0 2.125 1 0 -0.002 0.096 0.088 0.938
DR1 2.125 1 0 -0.043 0.090 0.075 0.84
DR2 2.125 1 0 -0.117 0.156 0.166 0.904
IM 1.4375 2 0 0.062 0.068 0.055 0.754
WT 1.4375 2 0 -0.004 0.112 0.138 0.977
DR0 1.4375 2 0 -0.000 0.069 0.074 0.965
DR1 1.4375 2 0 -0.016 0.071 0.065 0.921
DR2 1.4375 2 0 -0.047 0.144 0.154 0.951
IM 1.5 0 1 0.002 0.073 0.059 0.887
WT 1.5 0 1 -0.122 0.104 0.136 0.870
DR0 1.5 0 1 0.002 0.074 0.073 0.941
DR1 1.5 0 1 -0.012 0.079 0.070 0.909
DR2 1.5 0 1 -0.058 0.144 0.155 0.946
IM 2.375 1 1 -0.380 0.082 0.059 0.002
WT 2.375 1 1 -0.430 0.143 0.171 0.302
DR0 2.375 1 1 -0.300 0.094 0.084 0.114
DR1 2.375 1 1 -0.112 0.115 0.080 0.627
DR2 2.375 1 1 -0.204 0.163 0.167 0.770
IM 1.4375 2 1 0.065 0.071 0.059 0.765
WT 1.4375 2 1 -0.110 0.097 0.125 0.879
DR0 1.4375 2 1 0.014 0.071 0.075 0.957
DR1 1.4375 2 1 -0.016 0.078 0.067 0.917
DR2 1.4375 2 1 -0.056 0.146 0.154 0.945
IM 1.5 0 2 0.001 0.082 0.074 0.926
WT 1.5 0 2 -0.493 0.079 0.098 0.003
DR0 1.5 0 2 0.001 0.082 0.082 0.946
DR1 1.5 0 2 -0.024 0.105 0.082 0.893
DR2 1.5 0 2 -0.058 0.170 0.175 0.958
IM 2.125 1 2 -0.120 0.093 0.074 0.601
WT 2.125 1 2 -0.588 0.104 0.127 0.01
DR0 2.125 1 2 -0.059 0.100 0.089 0.858
DR1 2.125 1 2 -0.072 0.128 0.091 0.778
DR2 2.125 1 2 -0.136 0.192 0.187 0.909
IM 1.337 2 2 0.157 0.084 0.073 0.437
WT 1.337 2 2 -0.362 0.075 0.092 0.023
DR0 1.337 2 2 0.128 0.082 0.083 0.657
DR1 1.337 2 2 0.003 0.103 0.079 0.884
DR2 1.337 2 2 0.010 0.181 0.175 0.953
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Table F.2: Results: second alternate setting, mean outcome adjustment.

OR PS Bias SD RMSE SE CP

IM 0 0.000 0.020 0.020 0.020 0.957
IM 1 0.003 0.020 0.020 0.020 0.951
IM 2 -0.017 0.020 0.026 0.020 0.859
WT 0 0.000 0.021 0.021 0.021 0.961
WT 1 0.000 0.020 0.020 0.020 0.958
WT 2 0.031 0.023 0.039 0.023 0.724
DR0 0 0 0.015 0.016 0.022 0.016 0.848
DR0 0 1 0.015 0.016 0.022 0.016 0.841
DR0 0 2 0.015 0.016 0.022 0.016 0.837
DR0 1 0 0.012 0.016 0.020 0.016 0.869
DR0 1 1 0.013 0.016 0.020 0.016 0.871
DR0 2 0 0.032 0.017 0.036 0.017 0.523
DR0 2 2 0.043 0.017 0.046 0.017 0.312
DR1 0.000 0.020 0.020 0.020 0.951
DR2 -0.002 0.026 0.026 0.026 0.959

Table F.3: Results: second alternate setting, treatment effect adjustment.

OR PS Bias SD RMSE SE CP

IM 0 0.001 0.039 0.039 0.039 0.944
IM 1 -0.003 0.039 0.039 0.039 0.945
IM 2 0.025 0.039 0.046 0.039 0.899
WT 0 -0.001 0.047 0.047 0.047 0.949
WT 1 0.000 0.047 0.047 0.047 0.954
WT 2 -0.020 0.053 0.057 0.053 0.932
DR0 0 0 0.000 0.046 0.046 0.046 0.949
DR0 0 1 0.000 0.046 0.046 0.046 0.950
DR0 0 2 0.000 0.049 0.049 0.049 0.958
DR0 1 0 -0.003 0.046 0.046 0.046 0.946
DR0 1 1 -0.003 0.046 0.046 0.046 0.948
DR0 2 0 0.024 0.046 0.052 0.045 0.914
DR0 2 2 0.024 0.049 0.054 0.048 0.912
DR1 (indirect) 0.001 0.040 0.040 0.039 0.935
DR1 (direct) 0.000 0.040 0.040 0.039 0.930
DR2 (indirect) 0.017 0.052 0.055 0.052 0.934
DR2 (direct) 0.002 0.055 0.055 0.052 0.934
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