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Randomized Clinical Trials
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Example: Chronic Heart Disease

Target population: US patients with chronic heart disease.

Study population limited by

Eligibility criteria.
Consent.

Patients randomly assigned to treatment or placebo.

Results represent study population.
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Objective

Estimate mean outcomes and treatment effects in the target
population:

Adjust for population differences in some target population.

Use clinical data from a study population along with observational
data from the target population.

Increase flexibility of existing (parametric) methods.

4 / 33



Confounding Adjustment in Clinical Settings

There are two quantities of interest:

Mean treatment outcome.

Adjust a mean outcome from one population to another.

Average treatment effect.

Adjust a treatment effect for population differences.
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Adjusting a Mean Outcome

This is necessary when a random sample of the clinical outcome
for the target population is unavailable.

Example:

A one-armed trial identifies the mean clinical outcome for the
treated.
Historical data gives some information about the clinical outcome
for the placebo.
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Adjusting a Treatment Effect

Extend treatment effect estimation from study population to
target population.

Example: estimate a treatment effect given a study comparing two
treatments (no placebo) and a historical study.

Could use mean outcome adjustment on both treatment settings.

Requires stronger assumptions.
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Notation

Adjusting a Mean Outcome

Let Y ∗ be the outcome variable of interest.

Let X∗ be the associated covariates in the target population.

Let (X, Y ) be the counterparts of (X∗, Y ∗) in the study
population.

Adjusting a Treatment Effect

Let Y ∗(t) be the potential outcome for randomized treatment
t ∈ {0, 1}.
Let X∗ be a vector of baseline covariates in the target population.

Let Y (t), t = 0, 1 and X be the study population counterparts.
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Notation

Adjusting a Mean Outcome

The data consist of

{(Xi, Yi), i = 1, . . . , n}, a random sample of (X, Y ).

{X∗i , i = 1, . . . , n∗}, a random sample of X∗.

Target: µ∗ = E(Y ∗) for some fixed treatment.

Adjusting a Treatment Effect

The data consist of

{(Xi, Ti, Yi), i = 1, . . . , n} a random sample of (X, T, Y ).

{X∗i , i = 1, . . . , n∗} a random sample of X∗.

Target: δ∗ = µ∗1 − µ∗0 where µ∗t = E{Y ∗(t)}.
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Assumptions

First, assume X ∗ = X where X (X ∗) denotes the support of X (X∗).

Adjusting a Mean Outcome

Then assume

m(x) := E(Y ∗|X∗ = x) = E(Y |X = x), x ∈ X ∗

where m is known as the outcome regression (OR) function.

Adjusting a Treatment Effect

Then assume

d(x) : = E[Y ∗(1)− Y ∗(0)|X∗ = x]

= E(Y |T = 1,X = x)− E(Y |T = 0,X = x), x ∈ X .
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Imputation Method

Adjusting a Mean Outcome

The imputation approach to estimating µ∗ is

µ̂∗IM =
1

n∗

n∗∑
i=1

m̂(X∗)

where m̂ is some generic estimate of m based on (X, Y ).

Adjusting a Treatment Effect

The imputation approach to treatment effect adjustment is

δ̂∗IM =
1

n∗

n∗∑
i=1

d̂(X∗i )

where d̂ is some generic estimate of d.
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Adjusting a Mean Outcome

We may also write

µ∗ =

∫
m(x)f∗(x)dν(x) =

∫
m(x)

f∗(x)

f(x)
f(x)dν(x) = E

[
Y
f∗(X)

f(X)

]
,

where f and f∗ are the densities of X and X∗, respectively, with
respect to some common measure ν.

Adjusting a Treatment Effect

Another representation of δ∗ is given by

δ∗ =

∫
d(x)f∗(x)dν(x) =

∫
d(x)

f∗(x)

f(x)
f(x)dν(x) = E

[
D
f∗(X)

f(X)

]
,

noting that d(X) = E(D|X) where D = TY
π −

(1−T )Y
1−π .
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Weighting Method

Adjusting a Mean Outcome

This motivates the following weighted estimator:

µ̂∗WT =
1

n

n∑
i=1

Yir̂(Xi)

where r̂ is some generic estimate of r = f∗(X)/f(X).

Adjusting a Treatment Effect

The weighted estimator for treatment effect adjustment is

δ̂∗WT =
1

n

n∑
i=1

Yir̂(Xi)

(
Ti
π
− 1− Ti

1− π

)
.
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Weighting Method

Estimation of r can be based on

r̂(x) = exp{logit[p̂(x)]− log(n∗/n)} (1)

where p̂ is a generic binary regression estimate of the propensity score
function

p(x) = E(T |X = x).

14 / 33



Doubly Robust Approach

Adjusting a Mean Outcome

A doubly robust estimator of µ∗ is given by

µ̂∗DR = µ̂∗IM +
1

n

n∑
i=1

[Yi − m̂(Xi)]r̂(Xi)

= µ̂∗WT −
1

n

n∑
i=1

m̂(Xi)r̂(Xi) +
1

n∗

n∗∑
i=1

m̂(X∗i )

Estimation of m and r is typically based on parametric methods.
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Doubly Robust Approach

Adjusting a Treatment Effect

A doubly robust estimator of δ∗ is given by

δ̂∗DR = δ̂∗IM +
1

n

n∑
i=1

r̂(Xi)
[
Di − d̂(Xi)− (Ti − π)ĥ(Xi)

]
where h is some generic estimate of

h(x) =
m1(x)

π
+
m0(x)

1− π
= E

[
TY

π2
+

(1− T )Y

(1− π)2

∣∣∣∣X = x

]
.

Estimation of d, r, and h is typically based on parametric methods.
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Machine Learning in DR Methods

We consider estimating the nuisance functions using statistical machine
learning methods.

Let f represent a nuisance function: m, d, r, or h.

Assume that there exists a limit function f∞ such that, with
probability 1, f̂(x)→ f∞(x) for all x ∈X.

µ̂∗DR is consistent for µ∗ if m∞ = m or r∞ = r.

δ̂∗DR is consistent for δ∗ if d∞ = d or r∞ = r.
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Adjusting a Mean Outcome

For
√
n-consistency and asymptotic normality, we assume

m∞ = m, r∞ = r, and ||m̂−m||2||r̂ − r||2 = op(n
−1/2),

where ||.||2 denotes the L2-norm with respect to the distribution of X.

Adjusting a Treatment Effect

For
√
n-consistency and asymptotic normality, we assume

d∞ = d, r∞ = r, and ||d̂− d||2||r̂ − r||2 = op(n
−1/2).
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Under the aforementioned assumptions as well as some regularity
conditions including a Donsker condition

Adjusting a Mean Outcome

√
n(µ̂∗DR − µ∗) converges to a normal distribution with mean 0 and

variance

var{[Y −m(X)]r(X)}+

√
n

n∗
var[m(X∗)]

Adjusting a Treatment Effect

√
n(δ̂∗DR − δ∗) converges to a normal distribution with mean 0 and

variance

var{r(X)[D − d(X)− (T − π)h∞(X)]}+

√
n

n∗
var[d(X∗)].
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Adjusting a Mean Outcome

This is the nonparametric variance bound for estimating µ∗.

Thus, µ̂∗DR is asymptotically efficient in the nonparametric sense.

Adjusting a Treatment Effect

When h∞ = h, the asymptotic variance becomes the
nonparametric variance bound for estimating δ∗.

Then δ̂∗DR is asymptotically efficient in the nonparametric sense.
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The Super Learner

How does one choose the optimal machine learning approach?

Consider the principle of super learning.

Combines several candidate learners to create one ”super learner”.

Involves the use of cross-validation to select among many
candidate methods to compute a single learner.

The final learner is a weighted combination of the candidates.
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Sample Splitting

Even with the super learner, efficiency and
√
n-consistency of µ̂∗DR

and δ̂∗DR depend on a Donsker condition.

This imposes a limitation on the class of algorithms that can be
included in the super learner.

Sample splitting, or cross-fitting, may be used to remove the
Donsker condition while retaining efficiency and

√
n-consistency.

22 / 33



Sample Splitting

The entire sample {(Xi, Ti, Yi), i = 1, . . . , n} ∪ {X∗i , i = 1, . . . , n∗}
is partitioned randomly into L roughly equally-sized subsamples.

Let Si and S∗i be independent and uniformly distributed on
{1, . . . , L}.
The lth subsample consists of {(Xi, Ti, Yi) : Si = l}∪{X∗i , S∗i = l}.
For every l ∈ {1, . . . , L}, temporarily exclude the lth subsample.

Obtain nuisance functions (e.g., m̂(−l)) from the rest of the sample.
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Doubly Robust Estimator Based on Sample Splitting

Adjusting a Mean Outcome

Then µ∗ is estimated using

µ̂∗DR2 =
1

n

n∗∑
i=1

m̂(−S∗
i )(X∗i ) +

1

n

n∑
i=1

[Yi − m̂(−Si)(Xi)]r̂
(−Si)(Xi).

Adjusting a Treatment Effect

And δ∗ is estimated as

δ∗DR2 =
1

n∗

n∗∑
i=1

d̂(−S
∗
i )(X∗i )

+
1

n

n∑
i=1

r̂(−Si)(Xi)
[
Di − d̂(−Si)(Xi)− (Ti − π)ĥ(−Si)(Xi)

]
.
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Doubly Robust Estimator Based on Sample Splitting

Adjusting a Mean Outcome

µ̂∗DR2 is consistent for µ∗ if m∞ = m or r∞ = r or both.

µ̂∗DR2 is
√
n-consistent, asymptotically normal, and asymptotically

efficient under our assumptions as well as some basic regularity
conditions.

X ∗ = X
E(Y ∗|X∗ = x) = E(Y |X = x)
||m̂−m||2||r̂ − r||2 = op(n−1/2)

These regularity conditions no longer include a Donsker condition.
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Doubly Robust Estimator Based on Sample Splitting

Adjusting a Treatment Effect

δ̂∗DR2 is consistent for δ∗ if d∞ = d, r∞ = r, or both.

δ̂∗DR2 is
√
n-consistent, asymptotically normal, and asymptotically

equivalent to δ̂∗DR under our assumptions as well as some basic
regularity conditions.

X ∗ = X
E{Y ∗(1)− Y ∗(0)|X∗ = x}

= E(Y |T = 1,X = x)− E(Y |T = 0,X = x)

||d̂− d||2||r̂ − r||2 = op(n−1/2)

These conditions no longer include a Donkser condition.

If also h∞ = h, then δ̂∗DR2 is asymptotically efficient in the
nonparametric sense.
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Simulation Study

Generate W from the trivariate standard normal distribution and
generate Z according to

logit[P (Z = 1|W )] =

{
W1 −W2 +W3 (PS0)

W1 −W2 +W3 + 0.25W1sign(W2) (PS1)
.

Then we take a random sample of X from the conditional distribution
(W |Z = 0) and a random sample of X∗ from (W |Z = 1).
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Simulation Study

Adjusting a Mean Outcome

Generate Y as

Y =

{
−0.5 +X1 +X3 + ε (OR0)

−1 + (X1 ∨ 0)2 +X3 + ε (OR1)
,

where ∨ denotes maximum and ε ∼ N(0, 1).

Adjusting a Treatment Effect

Generate a treatment indicator T ∼ Bernoulli(π), π = P (T = 1) = 1/2.

Y =

{
−0.5 +X1 +X3 + T − 0.5TX3 + ε (OR0)

−1 + (X1 ∨ 0)2 +X3 + T − 0.5TX3 + 0.25TX2
3 + ε (OR1)

,
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Simulation Study

These methods are applied to 1000 replicate samples with
n = n∗ = 1000.

The super learner library is based on

glm (generalized linear model)
gam (generalized addititve model)
rpart (recursive partitioning and regression tree)

For the parametric methods, bootstrap standard errors are
obtained from 200 bootstrap samples.

Analytical standard errors are obtained for the nonparametric
methods.
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Simulation Results: Mean Outcome
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Simulation Results: Treatment Effect
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Ongoing and Future Research

Ongoing:

Application to data on implantable cardioverter-defibrillators.

Sensitivity analysis for the ignorability assumption.

Future:

Machine learning methods applied to other estimators.

Application to high dimensional data.

Machine learning in causal inference for longitudinal data.
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Thank you!
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Removing the Donsker Condition

We use the following lemma to exploit the independence implied by
sample splitting.

Lemma: Let f̂(o) be a function estimated from a sample
ON = (On+1, . . . ,ON ), and let Pn denote the empirical measure over
(O1, . . . ,On), which is independent of ON . Then

(Pn − P)(f̂ − f) = OP

(
||f̂ − f ||√

n

)
.

Source: E H Kennedy, S Balakrishnan, and M G’Sell. Sharp instruments for
classifying compliers and generalizing causal effects. arXiv:1801.03635. 2018.



The Super Learner

We want to estimate m0(X) = E0(Y |X) for some Y ∈ Y, X ∈ X .
Define the regression as the minimizer of the expected squared loss,

m0 = arg min
α0

E0L(O,α),

where L(O,α) = [Y −m(X)]2.

Given candidate learners m̂k, k = 1, . . . ,K, the super learner is a linear
combination of the candidates with coefficients determined via
cross-validation.

Source: M Van der Laan, E Polley, and A Hubbard. Super Learner. U.C.
Berkeley Division of Biostatistics Working Paper Series, 2007.



The Super Learner

1 Randomly partition the sample {(Xi, Yi), i = 1, . . . , n} into J
roughly equally sized subsamples.

2 For each j ∈ {1, . . . , J}, use the jth subsample as a validation
sample and combine the other subsamples into a training sample.

3 Obtain m̂
(−j)
k from this training sample using the same method

used for obtaining m̂k.

4 Find he coefficients for the training sample using

(α̂1, . . . , α̂K) = arg min
(α1,...,αK)

n∑
i=1

[
Yi −

K∑
k=1

αkm̂
(−ji)
k (Xi)

]2
,

such that
∑K

k=1 αk = 1 and αk ≥ 0 ∀k.

5 The super learner estimate of m is m̂SL =
∑K

k=1 α̂km̂k.



Simulation Results: Mean Outcome

OR0-PS0, µ∗ ≈ 0.16 OR0-PS1, µ∗ ≈ 0.14
Method Bias SD RMSE CP Method Bias SD RMSE CP

IM 0.000 0.068 0.068 0.943 IM 0.004 0.066 0.066 0.954
WT -0.008 0.184 0.185 0.846 WT 0.063 0.222 0.231 0.929
DR0 0.000 0.095 0.095 0.942 DR0 0.006 0.098 0.099 0.948
DR1 -0.001 0.091 0.091 0.935 DR1 0.004 0.087 0.087 0.948
DR2 0.000 0.094 0.094 0.938 DR2 0.005 0.093 0.093 0.951

OR1-PS0, µ∗ ≈ 0.08 OR1-PS1, µ∗ ≈ 0.08
Method Bias SD RMSE CP Method Bias SD RMSE CP

IM -0.209 0.078 0.223 0.676 IM -0.226 0.077 0.239 0.903
WT 0.004 0.286 0.286 0.905 WT 0.057 0.409 0.413 0.863
DR0 0.000 0.216 0.216 0.943 DR0 0.050 0.325 0.329 0.893
DR1 -0.026 0.124 0.127 0.936 DR1 -0.035 0.213 0.216 0.912
DR2 0.000 0.166 0.166 0.945 DR2 0.004 0.237 0.237 0.914

Simulation results for estimating a mean outcome: empirical bias, standard
deviation (SD), root mean squared error (RMSE), and coverage probability (CP).
DR0 is the parametric and DR1 is the nonparametric DR method.



Simulation Results: Average Treatment Effect

OR0-PS0, δ∗ ≈ 0.84 OR0-PS1, δ∗ ≈ 0.84
Method Bias SD RMSE CP Method Bias SD RMSE CP

IM 0.005 0.109 0.109 0.952 IM -0.004 0.109 0.109 0.939
WT 0.013 0.447 0.447 0.955 WT 0.064 0.471 0.475 0.952
DR0 0.011 0.178 0.178 0.954 DR0 0.004 0.186 0.186 0.945
DR1 0.008 0.159 0.159 0.947 DR1 0.003 0.163 0.163 0.938
DR2 0.010 0.172 0.172 0.955 DR2 0.003 0.172 0.172 0.941

OR1-PS0, δ∗ ≈ 1.09 OR1-PS1, δ∗ ≈ 1.09
Method Bias SD RMSE CP Method Bias SD RMSE CP

IM -0.122 0.151 0.194 0.859 IM -0.109 0.140 0.177 0.883
WT -0.039 0.709 0.710 0.944 WT 0.032 0.688 0.678 0.967
DR0 -0.026 0.481 0.481 0.939 DR0 -0.004 0.488 0.488 0.953
DR1 -0.015 0.348 0.348 0.930 DR1 -0.008 0.263 0.263 0.947
DR2 -0.014 0.367 0.367 0.929 DR2 -0.003 0.300 0.300 0.953

Simulation results for estimating an average treatment effect: empirical bias,
standard deviation (SD), root mean squared error (RMSE), and coverage
probability (CP). DR0 is the parametric and DR1 is the nonparametric DR method.


	Introduction
	Notation and Assumptions
	Machine Learning in DR Methods
	Simulation Studies


