What values are most common or most likely?
Three ways to measure:
- mode
- mean
- median
What values are most common or most likely?
Three ways to measure:
Mode: the most commonly occurring value.
Mean: this is what we usually think of as the “average”.
Median: the middle number when the data are ordered from smallest to largest.
The mean is sensitive to extreme values and skew. The median is not!
\(x\): 1, 3, 7, 9, 9 | \(y\): 1, 3, 7, 9, 45 |
---|---|
\(\text{median} = 7\) | \(\text{median} = 7\) |
\(\bar{x} = \frac{29}{5} = 5.8\) | \(\bar{y} = \frac{65}{5} = 13\) |
Changing that 9 out for a 45 changes the mean a lot! But the median is 7 for both \(x\) and \(y\).
Because the median is not affected by extreme observations or skew, we say it is a resistant measure or that it is robust.
Note: If the mean and median are roughly equal, it is reasonable to assume the distribution is roughly symmetric.