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Midterm

The Midterm is next week Tuesday, August 13.

Approximately 50 multiple choice questions.

You do not need a scantron.

Questions will be mostly conceptual.

You may bring any basic or graphing calculator.

I will bring extra scratch paper.
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Extra Credit Opportunity

Write an exam question that would be appropriate for your
midterm.

The midterm will cover material from Chapters 1, 2, and 3.

Your exam question must come from material covered in class,
your homeworks, or your labs.

Questions may be either multiple choice or short answer.

To receive any credit, you must write an original question and
provide both the question and the correct answer.

These can be submitted on iLearn (Assignments tab). It opens today
at 9:30am and will close on Thursday at 11:59pm.
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Independence

Independence of random processes is similar to independence of
variables and observations.

We say that two random processes are independent if knowing
the outcome of one provides no useful information about the
outcome of the other.
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Independence

For example, consider our discussion on rolling 2 six-sided dice.

The roll of the first die has no effect on the roll of the second die.

Thus our two dice rolls are independent of one another.
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Independence

We’ve already calculated the probability of the two rolls both being a 1

1/6 of the time the first roll is a 1

A further 1/6 of those times the second is also a 1.

So we decided that the probability was (1/6)× (1/6) = 1/36.

Multiplying these probabilities together works because the two events
are independent.
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Multiplication Rule for Independent Processes

Let A and B be events from two different and independent processes.
Then the probability that both A and B occur can be calculated as the
product of their separate probabilities:

P (A and B) = P (A)× P (B)

Similarly, if there are k events A1, . . . , Ak from k independent
processes, then the probability they all occur is

P (A1)× P (A2)× · · · × P (Ak)
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Example

About 9% of people are left-handed. Suppose 2 people are selected at
random from the U.S. population. Because the sample size of 2 is very
small relative to the population, it is reasonable to assume these two
people are independent.

1 What is the probability that both are left-handed?

2 What is the probability that both are right-handed?
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Example: Both Left-Handed

What is the probability that both are left-handed?

Let L1 be the event that the first person is left-handed and L2 the
event that the second person is left-handed.

We are told that 9% of people are left-handed, so
P (L1) = P (L2) = 0.09.
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Example: Both Left-Handed

What is the probability that both are left-handed?

We are assuming that these people are independent, so we can use
the multiplication rule:

P (L1 and L2) = P (L1)× P (L2)

= (0.09)× (0.09)

= 0.0081

or 0.81% (this is highly unlikely!)
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Example: Both Right-Handed

What is the probability that both are right-handed?

First, assume that everyone is either right- or left-handed.

Then Lc
1 is the event that the first person is right-handed and Lc

2

is the event that the second person is right-handed.

From the previous slide, we decided that P (L1) = P (L2) = 0.09

So P (Lc
1) = 1− P (L1) = 1− 0.09 = 0.91 and P (Lc

2) = 0.91

Section 3.1 August 5, 2019 11 / 79



Example: Both Right-Handed

What is the probability that both are right-handed?

We are still assuming that these people are independent, so we can
again use the multiplication rule:

P (Lc
1 and Lc

2) = P (Lc
1)× P (Lc

2)

= (0.91)× (0.91)

= 0.8281

or 82.81%.
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Disjoint Events - Independent?

If two events are disjoint, are they independent?
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Disjoint Events- Independent?

If two events are disjoint, are they independent?

Recall that independent events have no relationship with one
another.

This means that if we know something about event A, we don’t
get any information about event B.

For disjoint events, if event A occurs, we can be totally certain
that event B did not occur.

Therefore they are dependent.
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Example

Consider two disjoint events for rolling a six-sided die. Let A = {1} be
the event that I roll a 1 and B = {2} the event that I roll a 2.

If I know that A occurred, then I can be 100% sure that B did not
occur.

If I know that A did not occur, then I know that the roll must be
a 2, 3, 4, 5, or 6.

Now there are five possible options instead of six!
We’ve narrowed down our options, so knowing that I did not roll a
1 has given us some useful information.

Therefore A and B can’t be independent.
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Conditional Probability

We can get far more information out of the relationships between
multiple variables than we can from a single variable.
For example

Recall our case study on the malaria vaccine.

We can look at P(infection), but that doesn’t tell us anything
about the efficacy of the vaccine.

Instead, we want to look at the probability that a person develops
infection if they were vaccinated.

We compare this to the probability that a person develops
infection if they were not vaccinated.
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Contingency Table Probabilities

Let’s consider a data set on a machine learning classifier.

The classifier is designed to take images and determine whether
each one is about fashion.

The classifier groups 1822 photos into either ”fashion” or ”not
fashion”.

Separately, these photos are grouped into ”fashion” and ”not
fashion” by a group of people.

We take these groupings as the truth that the classifier is trying to
get at.

Section 3.2 August 5, 2019 17 / 79



Contingency Table Probabilities

We can take these groupings and build them into a contingency table.

truth

Fashion Not Total

classifier
Fashion 197 22 219
Not 112 1491 1603
Total 309 1513 1822
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Contingency Table Probabilities

We think about this a lot with classification problems!

truth

fashion not fashion Total

classifier
pred fashion 197 22 219
pred not 112 1491 1603
Total 309 1513 1822

When we build our classifier, we want to know the rate at which it
correctly and incorrectly identifies fashion and not fashion.

This will give us an idea of how successful our classifier is.

Is it a good classifier?
Should we try a different machine learning algorithm?
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Example: Contingency Table Probabilities

1 If the photo is actually about fashion, what is the probability that
the classifier correctly identified it as being about fashion?

2 If the classifier predicted that a photo was not about fashion, what
is the probability that it was incorrect?
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Example: Contingency Table Probabilities

If the photo is actually about fashion, what is the probability
that the classifier correctly identified it as being about
fashion?

truth

fashion not fashion Total

classifier
pred fashion 197 22 219
pred not 112 1491 1603
Total 309 1513 1822

We know that the photo is actually about fashion, so we focus our
attention to the column where truth is fashion.

Then within this column, we look for the number of times the
classifier pred fashion out of the total number of fashion
photos.

Section 3.2 August 5, 2019 21 / 79



Example: Contingency Table Probabilities

If the photo is actually about fashion, what is the probability
that the classifier correctly identified it as being about
fashion?

truth

fashion not fashion Total

classifier
pred fashion 197 22 219
pred not 112 1491 1603
Total 309 1513 1822

P (classifier is pred fashion given truth is fashion) =
197

309

or 0.638, a reasonable correct identification rate for fashion.
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Example: Contingency Table Probabilities

If the classifier predicted that a photo was not about fashion,
what is the probability that it was incorrect?

truth

fashion not fashion Total

classifier
pred fashion 197 22 219
pred not 112 1491 1603
Total 309 1513 1822

We know that classifier is pred not fashion, so we focus our
attention to this row.

We want to know the probability that it was incorrect, or in truth

is fashion.
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Example: Contingency Table Probabilities

If the classifier predicted that a photo was not about fashion,
what is the probability that it was incorrect?

truth

fashion not fashion Total

classifier
pred fashion 197 22 219
pred not 112 1491 1603
Total 309 1513 1822

P (truth is fashion given classifier is pred not) =
112

1603

or 0.070, a low misidentification rate for fashion photos.
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Marginal and Joint Probabilities

truth

fashion not fashion Total

classifier
pred fashion 197 22 219
pred not 112 1491 1603
Total 309 1513 1822

We’ve now used our contingency table to think about two types of
probabilities.

The probability for a single event (from the row and column of
totals).
The probability for multiple events together (from the numbers in
the middle).
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Marginal Probabilities

A marginal probability is a probability based on a single
variable.

Think of the margins as the edges of a contingency table where we
have the information for each variable individually.
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Marginal Probabilities

truth

fashion not fashion Total

classifier
pred fashion 197 22 219
pred not 112 1491 1603
Total 309 1513 1822

A probability based solely on our classifier is a marginal probability.
It is based on a single variable without regard to any other variables.

P (classifier is pred fashion) = 219/1822
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Joint Probabilities

A joint probability is a probability for two or more variables
together.

Think of this as a probability that two or more variables occur
jointly (together).
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Joint Probabilities

truth

fashion not fashion Total

classifier
pred fashion 197 22 219
pred not 112 1491 1603
Total 309 1513 1822

The probability that our classifier is pred fashion and the truth is
fashion is a joint probability. It is based on two variables together.

P (classifier is pred fashion and truth is fashion) = 197/1822
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Table Proportions

We can examine marginal and joint probabilities using table
proportions. Table proportions are computed by dividing each count
in a contingency table by the table’s grand total.

truth

fashion not fashion Total

classifier
pred fashion 0.108 0.012 0.120
pred not 0.062 0.818 0.880
Total 0.170 0.830 1.000
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Joint Probability Distributions

A joint probability distribution is just a probability distribution for
multiple variables together.

Joint Outcome Probability
classifier is pred fashion and truth is fashion 0.108
classifier is pred fashion and truth is not fashion 0.012
classifier is pred not and truth is fashion 0.062
classifier is pred not and truth is not fashion 0.818
Total 1.000

Note: A marginal probability distribution is the type of probability
distribution we introduced last week!
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Marginal and Joint Probabilities

We can compute marginal probabilities using joint probabilities.

Joint Outcome Probability
classifier is pred fashion and truth is fashion 0.108
classifier is pred fashion and truth is not fashion 0.012
classifier is pred not and truth is fashion 0.062
classifier is pred not and truth is not fashion 0.818
Total 1.000

For example,

P (truth is fashion)

=P (classifier is pred fashion and truth is fashion)

+ P (classifier is pred not and truth is fashion)

=0.108 + 0.062

=0.170
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Marginal and Joint Probabilities

This makes sense based on our table proportions!

truth

fashion not fashion Total

classifier
pred fashion 0.108 0.012 0.120
pred not 0.062 0.818 0.880
Total 0.170 0.830 1.000

All of these numbers are directly proportional to our original
contingency table.

The row and column of totals represent the marginal probabilities.

These totals are the actual sums of their respective rows/columns.
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Defining Conditional Probability

The classifier predicts whether a photo is about fashion, but
it is not perfect.

We’d like to know how we can use these predictions to improve
our understanding of the second variable, the truth.

We might want to know, for example, the probability that the
truth is fashion given that the classifier predicts fashion.
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Defining Conditional Probability

The probability that a random photo from the data set is actually
about fashion is 0.17. Suppose we know that classifier is pred

fashion.

Now we can get a better estimate of the probability that the
truth is fashion.

We do this by restricting our attention to the 219 cases where the
classifier is pred fashion.

Then we look at the fraction of these photos where the truth is
fashion (197 cases).

P (truth is fashion given classifier is pred fashion) =
197

219
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Defining Conditional Probability

When we are given some useful information that allows us to
restrict our attention, we call these probabilities conditional
probabilities.

We can say that we condition based on some given information, or
that we computed the probability under the condition that the
classifier is pred fashion.
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Defining Conditional Probability

There are two important aspects to a conditional probability:

1 The outcome of interest is whatever we want to know about.

2 The condition is information we know to be true, a known
outcome or event.
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Conditional Probability Notation

We separate our outcome of interest from our condition in our
probability notation with a vertical bar:

P (truth is fashion given classifier is pred fashion)

becomes

P (truth is fashion | classifier is pred fashion) =
197

219

We read the vertical bar as the word given.
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Defining Conditional Probability

Earlier, we computed

P (truth is fashion given classifier is pred fashion) = 0.900

by restricting our attention to the data where classifier is pred

fashion.

From this row where classifier is pred fashion, we took the
number of cases where truth is fashion and divided by the row total
to get our answer.
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Defining Conditional Probability

However, we don’t always have access to the count data. Instead we
are given only the probabilities.

truth

fashion not fashion Total

classifier
pred fashion 0.108 0.012 0.120
pred not 0.062 0.818 0.880
Total 0.170 0.830 1.000
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Defining Conditional Probability

Suppose we took a sample of 1000 photos.

We could multiply each probability by 1000 to get an estimate of
how many would fall into each place in our contingency table.

We would anticipate 0.120× 1000 = 120 to be the number of cases
where classifier is pred fashion.

We would expect to see 0.108× 1000 = 108 cases where truth is
fashion and classifier is pred fashion
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Defining Conditional Probability

We can use these numbers to compute our conditional probability.
(Using our count data, we found 197/219 = 0.90.)

P (truth is fashion given classifier is pred fashion)

=
# cases (truth is fashion and classifier is pred fashion)

# cases (classifier is pred fashion)

=
108

120
=

0.108× 1000

0.120× 1000
=

0.108

0.120
= 0.90
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Defining Conditional Probability

This is the ratio, or fraction, or two probabilities. We can rewrite this
as

P (truth is fashion given classifier is pred fashion)

=
P (truth is fashion and classifier is pred fashion)

P (classifier is pred fashion)

=
0.108

0.120
= 0.90
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Defining Conditional Probability

This leads us to the general conditional probability formula:

Let A and B be outcomes. The conditional probability of outcome A
occurring given the condition that B has occurred is

P (A|B) =
P (A and B)

P (B)
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Example

Find the probability that the classifier is incorrect when classifying a
photo about fashion.
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Example

Find the probability that the classifier is incorrect when
classifying a photo about fashion.

We know that the photo is about fashion.

We can write that truth is fashion.
This information is given, or our condition.

From that, we want to know the probability that the classifier is
wrong.

We want to know the probability that the classifier results in
not fashion.
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Example

Find the probability that the classifier is incorrect when
classifying a photo about fashion.

Putting this all together, we want

P (classifier is not fashion | truth is fashion)
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Example

Using our formula

P (A|B) =
P (A and B)

P (B)

we let A be the event that classifier is not fashion and B the
event that truth is fashion. Then

P (classifier is not fashion | truth is fashion)

=
P (classifier is not fashion and truth is fashion)

P (truth is fashion)
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Example

truth

fashion not fashion Total

classifier
pred fashion 0.108 0.012 0.120
pred not 0.062 0.818 0.880
Total 0.170 0.830 1.000

P (classifier is not fashion | truth is fashion)

=
P (classifier is not fashion and truth is fashion)

P (truth is fashion)

=
0.062

0.170
= 0.363
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Example: Smallpox

The smallpox data set is a sample of 6224 individuals from the year
1721.

inoculated

yes no Total

result
lived 238 5136 5374
died 6 844 850
Total 244 5980 6224
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Example: Smallpox

The smallpox data set has the following table proportions:

inoculated

yes no Total

result
lived 0.038 0.825 0.863
died 0.001 0.136 0.137
Total 0.039 0.961 1.000

Let’s find the probability that an inoculated person died from smallpox.
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Example: Smallpox

Find the probability that an inoculated person died from
smallpox.

We are told that the person is inoculated. This is our condition.

We want to know the probability that this person died.

This is the probability that a person died given that they were
inoculated

P (died | inoculated)
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Example: Smallpox

Find the probability that an inoculated person died from
smallpox.

inoculated

yes no Total

result
lived 0.038 0.825 0.863
died 0.001 0.136 0.137
Total 0.039 0.961 1.000

P (died | inoculated) =
P (died and inoculated)

P (inoculated)

=
0.001

0.039
= 0.026
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General Multiplication Rule

In the previous section, we talked about the multiplication rule for
independent events. The general multiplication rule is for all
events, whether or not they are independent.

Let A and B be any two outcomes or events. Then

P (A and B) = P (A|B)× P (B)

Notice that this is not new information! This is just a rearrangement of
the formula for conditional probability.
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Example

Let’s return to the smallpox data set, but suppose we only have two
pieces of information:

1 96.08% of people were not inoculated.

2 85.88% of people who were not inoculated ended up surviving.

Can we compute the probability that a resident was not inoculated and
lived?
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Example

Compute the probability that a resident was not inoculated
and lived.

First, let’s rewrite the information we were given in probability
notation.

96.08% of people were not inoculated
→ P (inoculated = no) = 0.9608

85.88% of people who were not inoculated ended up surviving
→ P (result = lived | inoculated = no) = 0.8588
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Example

Compute the probability that a resident was not inoculated
and lived.

Then we use this information with the general multiplication rule.

P (result = lived and inoculated = no)

= P (result = lived | inoculated = no)× P (inoculated = no)

= 0.9608× 08588

= 0.8251.
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Sum of Conditional Probabilities

Let A1, . . . , Ak represent all the disjoint outcomes for a variable or
process. Then if B is some event,

P (A1|B) + · · ·+ P (Ak|B) = 1

The rule for complements also holds when an event and its complement
are conditioned on the same information:

P (A|B) = 1− P (Ac|B)

Why are these true? Let’s look at a Venn diagram.
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Independence Considerations

For two independent events, knowing the outcome of one should give
us no information about the probability of the other. Consider X and
Y , the outcomes for rolling two six-sided dice.

1 Find P (X = 1).

2 Find P (X = 1 and Y = 1).

3 Find P (Y = 1|X = 1).

Knowing the outcome of X doesn’t give us any additional information
about Y .
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Independence Considerations

We can use the Multiplication Rule to show that the conditioning
information has no influence for independent processes:

P (Y = 1|X = 1) =
P (Y = 1 and X = 1)

P (X = 1)

=
P (Y = 1)P (X = 1)

P (X = 1)

= P (Y = 1)
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Example: The Gambler’s Fallacy

A roulette wheel has 18 black slots, 18 red slots, and 2 green slots (38
total slots).

Ron is watching a roulette table in a casino and notices that the last
five outcomes were black. He figures that the chances of getting black

six times in a row is very small (about 1/64) and puts his paycheck on
red.

What is wrong with his reasoning?

Section 3.2 August 5, 2019 61 / 79



Example: The Gambler’s Fallacy

What is wrong with Ron’s reasoning?

It’s true that there is close to a 1/64 = 0.016 chance that we get
black six times in a row.

P (black1)× · · · × P (black5)× P (black6) = (9/19)6 = 0.011

But there’s also a 1/64 chance that we get black five times in a
row followed by red.

P (black1)× · · · × P (black5)× P (red6) = (9/19)6 = 0.011
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Example: The Gambler’s Fallacy

What is wrong with Ron’s reasoning?

Each spin is independent of the previous spins!

This means that each spin has a 18/38 chance of being black!

Ron has a 1− 18
38 = 0.538 chance of losing his entire paycheck.
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Tree Diagrams

Tree diagrams help organize outcomes and probabilities based on the
structure of the data. They are especially useful when the data can be
put into some kind of sequential structure.
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Tree Diagrams

The smallpox data can be structured this way.

We split the data by inoculation (yes or no).

Then we split by result (lived or died).
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Tree Diagrams
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Tree Diagrams

The first branch, for inoculation, is called the primary branch.

All other branches, in this case for result are secondary
branches.
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Tree Diagrams

The probabilities for the primary branch are marginal.

For inoculation is yes, the marginal probability is
P (inoculation is yes) = 0.0392.

The probabilities for the secondary branches are conditional.

For result is lived on the inoculation is yes branch, we have
P (result is lived | inoculation is yes) = 0.9754
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Tree Diagrams

Joint probabilities are shown to the right of each secondary branch.

These are computed using the General Multiplication Rule

P (A and B) = P (A|B)× P (B)

where the primary branch represents event B and the secondary
branch event A.
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Example: Exam Scores

Consider the midterm and final for a statistics class.

Suppose 13% of students earned an A on the midterm.

Of those students who earned an A on the midterm, 47% received
an A on the final.

11% of the students who earned lower than an A on the midterm
received an A on the final.

You pick up a final exam at random and notice the student
received an A.

What is the probability that this student earned an A on the midterm?
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Example: Exam Scores

Let’s start by writing the given information in probability notation.

P (midterm = A) = 0.13

P (final = A | midterm = A) = 0.47

P (final = A | midterm = not A) = 0.11

We want to know the probability that a student who earned an A on
the final also earned an A on the midterm:

P (midterm = A | final = A)
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Example: Exam Scores

Now that we’ve formalized the information from the problem
statement, we can consider our next steps.

It’s not yet clear how to calculate

P (midterm = A | final = A),

so let’s use what we know to draw a tree diagram.
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Example: Exam Scores

We will use this information to draw our tree diagram.

P (midterm = A) = 0.13

P (final = A | midterm = A) = 0.47

P (final = A | midterm = not A) = 0.11
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Example: Exam Scores

Can we use this to calculate P (midterm = A | final = A)?
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Example: Exam Scores

First, consider our conditional probability formula.

P (midterm = A | final = A) =
P (midterm = A and final = A)

P (final = A)

We can get all of the probabilities on the right hand side of the formula
by using our tree diagram!
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Example: Exam Scores

First,
P (midterm = A and final = A) = 0.0611.
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Example: Exam Scores

Then

P (final = A)

= P (midterm = not A and final = A) + P (midterm = A and final = A)

= 0.0957 + 0.0611 = 0.1568
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Example: Exam Scores

Plugging these in,

P (midterm = A | final = A) =
P (midterm = A and final = A)

P ( final = A)

=
0.0611

0.1568
= 0.3897.

So the probability that a student earned an A on the midterm, given
that their final exam score was an A, is about 39%.
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Bayes’ Theorem

That was a lot of work!

Bayes’ Theorem will help minimize this work so that we can more
easily calculate

P (statement about variable 1 | statement about variable 2)

when we have information about

P (statement about variable 2 | statement about variable 1).
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