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Final Exam Options

Option 1: The final exam is NOT comprehensive.

Option 2: The final exam IS comprehensive, but if you do better on
the final than on the midterm, your final exam score will replace your
midterm score. The score comparison will be based on raw scores,
NOT scores with extra credit included.
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Foundations for Inference

Statistical inference is where we get to take all of the concepts
we’ve learned and use them on our data.

We want to understand and quantify uncertainty related to
parameter estimates.

The details will vary, but the foundations will carry you far
beyond this class.
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Foundations for Inference

In this chapter, we will

1 Think about using a sample proportion to estimate a population
proportion.

2 Build confidence intervals, or ranges of plausible values for the
population parameter.

3 Introduce hypothesis testing, which allows us to formally test some
of those research questions we talked about in Chapters 1 and 2.
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Point Estimates

A recent poll suggests Trump’s approval rating among US adults
is 41%.

We consider 41% to be a point estimate for the true approval
rating.

The true rating is what we would see if we could get responses from
every single adult in the US.

The response from the entire population is the parameter of
interest.
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Point Estimates

When the parameter is a proportion, it is often denoted by p.

The sample proportion is denoted p̂ (p-hat).

Unless we collect responses from every individual in the
population, p is unknown.

We use p̂ as our estimate of p.

Section 5.1 August 19, 2019 6 / 46



Sampling Distribution

Sample # Observations Mean

1 x1,1 x1,2 . . .x1,n x̄1
2 x2,1 x2,2 . . .x2,n x̄2
3 x3,1 x3,2 . . .x3,n x̄3

Etc.

x̄ will change each time we get a new sample. Therefore, when x is a
random variable, x̄ is also a random variable. (Recall that we also
estimate p by p̂ = x̄.)
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Error

The difference between the sample proportion and the parameter
is called the error in the estimate.

Error consists of two aspects:
1 sampling error
2 bias.
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Sampling error

Sampling error is how much an estimate tends to vary between
samples.

This is also referred to as sampling uncertainty.

E.g., in one sample, the estimate might be 1% above the true
population value.

In another sample, the estimate might be 2% below the truth.

Our goal is often to quantify this error.
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Bias

Bias is a systematic tendency to over- or under-estimate the
population true value.

E.g., Suppose we were taking a student poll asking about support
for a UCR football team.

Depending on how we phrased the question, we might end up with
very different estimates for the proportion of support.

We try to minimize bias through thoughtful data collection
procedures.
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Variability of a Point Estimate

Suppose the true proportion of American adults who support the
expansion of solar energy is p = 0.88

This is our parameter of interest.

If we took a poll of 1000 American adults, we wouldn’t get a
perfect estimate.

Assume the poll is well-written (unbiased) and we have a random
sample.
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Variability of a Point Estimate

How close might the sample proportion (p̂) be to the true value?

We can think about this using simulations.

This is possible because we know the true proportion to be
p = 0.88.
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Variability of a Point Estimate

Here’s how we might go about constructing such a simulation:

1 There were about 250 million American adults in 2018. On 250
million pieces of paper, write “support” on 88% of them and “not”
on the other 12%.

2 Mix up the pieces of paper and randomly select 1000 pieces to
represent our sample of 1000 American adults.

3 Compute the fraction of the sample that say “support”.
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Variability of a Point Estimate

Obviously we don’t want to do this with paper, so we will use a
computer.

Using R, we got a point estimate of p̂1 = .894.

This means that we had an error of 0.894 − 0.88 = +0.014

Note: the R code for this simulation may be found on page 171 of the
textbook.
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Variability of a Point Estimate

This code will give a different estimate each time it’s run (so the
error will change each time).

Therefore, we need to run multiple simulations.

In more simulations, we get
1 p̂2 = 0.885, which has an error of +0.005
2 p̂3 = 0.878 with an error of −0.002
3 p̂4 = 0.859 with an error of −0.021
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Variability of a Point Estimate

The histogram shows the estimates across 10,000 simulations. This
distribution of sample proportions is called a sampling distribution.
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Sampling Distribution

We can characterize this sampling distribution as follows:

Center:

The center is x̄p̂ = 0.880, the same as our parameter.

This means that our estimate is unbiased.

The simulations mimicked a simple random sample, an approach
that helps avoid bias.
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Sampling Distribution

We can characterize this sampling distribution as follows:

Spread.

The standard deviation of the sampling distribution is sp̂ = 0.010.

When we’re talking about a sampling distribution or the
variability of a point estimate, we use the term standard error
instead of standard deviation.

Standard error for the sample proportion is denoted SEp̂.
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Sampling Distribution

We can characterize this sampling distribution as follows:

Shape.

The distribution is symmetric and bell-shaped - it resembles a
normal distribution.

These are all good! When the population proportion is p = 0.88 and
the sample size is n = 1000, the sample proportion p̂ is a good estimate
on average.
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Sampling Distribution

Note that the sampling distribution is never observed!

However,

It is useful to think of a point estimate as coming from a
distribution.

The sampling distribution will help us make sense of the point
estimates that we do observe.
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Example

What do you think would happen if we had a sample size of 50 instead
of 1000?

Intuitively, more data is better.

This is true!

If we have less data, we expect our sampling distribution to have
higher variability.

In fact, the standard error will increase if we decrease sample size.
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Central Limit Theorem

The sampling distribution histogram we saw looked a lot like a
normal distribution.

This is no coincidence!

This is the result of a principle called the Central Limit
Theorem.
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Central Limit Theorem

When observations are independent and the sample size is sufficiently
large, the sample proportion p̂ will tend to follow a normal distribution
with mean

µp̂ = p

and standard error

SEp̂ =

√
p(1 − p)

n
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The Success-Failure Condition

In order for the Central Limit Theorem to hold, the sample size is
typically considered sufficiently large when

np ≥ 10

and
n(1 − p) ≥ 10

This is called the success-failure condition.
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Standard Error

Using the standard error, we can see that the variability of a sampling
distribution decreases as sample size increases.

SEp̂ =

√
p(1 − p)

n
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Example

Confirm that the Central Limit Theorem applies for our example with
p = 0.88 and n = 1000. Confirm that the Central Limit Theorem
applies.
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Example

Independence. There are n = 1000 observations for each sample
proportion p̂, and each of those observations are independent draws.

The most common way for observations to be considered
independent is if they are from a simple random sample.

If a sample is from a seemingly random process, checking
independence is more difficult. Use your best judgement.
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Example

Success-failure condition.

np = 1000 × 0.88 = 880 ≥ 10

and
n(1 − p) = 1000 × (1 − 0.88) = 120 ≥ 10

The independence and success-failure conditions are both satisfied, so
the Central Limit Theorem applies and it’s reasonable to model p̂ using
a normal distribution.
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Example

Compute the theoretical mean and standard error of p̂ when p = 0.88
and n = 1000, according to the Central Limit Theorem.

µp̂ = p = 0.88

and

SEp̂ =

√
p(1 − p)

n
=

√
0.88 × (1 − 0.88)

1000
= 0.010

So p̂ is distributed approximately N(0.88, 0.010).
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Example

Estimate how frequently the sample proportion p̂ should be within 0.02
of the population value, p = 0.88.
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Example

Within 0.02 of 0.88 is between 0.86 and 0.90. As before, we will find
the Z-scores.

z0.86 =
0.86 − 0.88

0.010
= −2

and

z0.90 =
0.90 − 0.88

0.010
= 2
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Example

Using software,

P (−2 < Z < 2) = 1 − P (Z > 2) − P (Z < −2)

= P (Z < 2) − P (Z < −2)

= 0.977 − 0.023

= 0.954

So 95.4% of the proportions should fall within 0.02 of the true
population value.
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Central Limit Theorem in the Real World

In a real-world setting, we almost never know the true population
proportion.

However, we use the population proportion to determine whether
the Central Limit Theorem is appropriate.

How do we verify use of the Central Limit Theorem?
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Central Limit Theorem in the Real World

Independence. The poll is a simple random sample of American adults,
which means that the observations are independent.

Success-failure condition. Without the population proportion, we use p̂
as our next best way to check the success-failure condition.

np̂ ≥ 10

and
n(1 − p̂) ≥ 10
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Central Limit Theorem in the Real World

We call this a substitution approximation or the plug-in principle.

This can also be used to estimate the standard error:

SEp̂ ≈
√
p̂(1 − p̂)

n

This estimate of the standard error tends to be a good approximation
of the true standard error.
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More About the Central Limit Theorem

What is our conditions don’t hold and either

np < 10

or
n(1 − p) < 10?
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More About the Central Limit Theorem

Let’s do another simulation. Suppose p = 0.25. Here’s a sample of size
n = 10:

no, no, yes, yes, no, no, no, no, no, no

Here, p̂ = 0.2 for yeses.
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More About the CLT

Notice that
np = 10 × 0.25 = 2.5 < 10

The mean and standard deviation for this binomial distribution are 2.5
and 0.137, respectively.

If we simulate many samples with n = 10 and p = 0.25, what happens
to the sampling distribution?
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More About the CLT

The histogram shows simulations of p̂ for n = 10 and p = 0.25

The normal distribution has the same mean (0.25) and standard
deviation (0.137).
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More About the CLT

The normal distribution is unimodal, smooth, and symmetric.

The sampling distribution is unimodal, but it is neither smooth
nor symmetric.
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More About the CLT

In general, when np or n(1 − p) are less than 10,

The distribution is not continuous.

The skew is more noteworthy.

When np and n(1 − p) are greater than 10,

The larger both np and n(1− p), the more normal the distribution.
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More About the CLT

The sampling distribution is always centered at the true
population proportion p (i.e., µ = p).

This means that the sample proportion p̂ is an unbiased estimate
of p.

This is true as long as the data are independent.
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More About the CLT

The variability decreases as the sample size n increases.

Remember our formula for standard error!

Estimates based on a larger sample are intuitively more likely to
be accurate.
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More About the CLT

For a particular sample size, the standard error is largest when
p = 0.5

This is also reflected in the standard error formula.

SEp̂ =

√
p(1 − p)

n

p(1 − p) is maximized at p = 0.5.
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More About the CLT

The distribution of p̂ will always be discrete.

However, the normal distribution is still a good approximation
when the success-failure condition holds.

There are about 25 examples of sampling distributions with different
values of n and p on pages 176 and 177 of the textbook.
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Extending the Framework

Using a sample statistic to estimate a parameter is quite common.

We can apply this to many other statistics (other than
proportions).

The mean is also a very common statistic and parameter.

In this case, we use x̄ to estimate µ.

We will talk more about estimation strategies for the mean in another
chapter.
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