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Hypothesis Testing Framework

Suppose we’re interested in examining how people perform on a
multiple choice question related to world health. We might like to
understand if

H0: People never learn these topics and their responses are random
guesses.

HA: People have knowledge that helps them do better than random
guessing, or perhaps have false knowledge that leads them to do worse
than random guessing.
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Hypotheses

We talked briefly about hypothesis before! Recall that

H0 is the null hypothesis.

HA is the alternative hypothesis.
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Hypotheses

The null hypothesis represents a skeptical perspective or a
perspective of ”no difference”. This is the claim to be tested.

The alternative hypothesis is some new, alternate claim. It is often
represented by a range of possible values.

We will define these more precisely as we go.
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Hypotheses

Let’s return to our example about a world health question.

Suppose there are 4 possible answers and only 1 correct answer.

The responses being random guesses corresponds to

H0 : p =
1

4

The responses relating to some knowledge (whether correct or
incorrect) corresponds to

HA : p 6= 1

4
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Hypotheses

The alternative hypothesis usually represents a new or stronger
perspective.

It would be interesting to know that people know something about
world health (if in fact p > 1/4).

It would also be interesting to know if people have misleading
information about world health (if in fact p < 1/4).
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Hypothesis Testing

The hypothesis testing framework is very general!

Any time someone makes a claim that’s difficult to believe, we
start by being skeptical.

If enough evidence is presented to support that claim, we may
reject our skeptical position and change our minds.
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Example: Juries

A jury on a criminal case makes two possible decisions: innocent or
guilty.

In principle, the US court system operates under ”innocent until
proven guilty”.

How might we set this up in a formal hypothesis framework?
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Example: Juries

If a person is innocent until proven guilty, our default assumption
should be that the person is innocent:

H0 : the defendant is innocent.

We should be skeptical of the claim that a person is guilty, concluding
guilt only if we are convinced beyond a reasonable doubt:

HA : the defendant is guilty.
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Example: Juries

Crucially, even if we aren’t convinced that a person is innocent, we
may still fail to convict.

That is, we may fail to convict because we are unsure.

This is because a jury’s decision is based on our being
overwhelmingly convinced of guilt, not of innocence.

The prosecutor may fail to provide enough evidence to convince us
of guilt, but that doesn’t necessarily mean that the defendant is
innocent.
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Hypothesis Testing

The jury framework is a lot like hypothesis testing:

We may find sufficient evidence to reject the null hypothesis.

We may also not find sufficient evidence to reject the null
hypothesis.

However, even if we lack this evidence, we typically do not accept
the null hypothesis as true.

Failing to find sufficient evidence for the alternative hypothesis
does not necessarily mean that the null hypothesis is true!
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Hypotheses

Let’s return to our example about a world health question.

Recall that

H0 : p =
1

4

and

HA : p 6= 1

4
.
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The Null Value

In this setting, we want to know something about the population
parameter p.

We compare this to the value 0.25, called the null value.

We denote the null value by p0 (”p-nought”). Here, p0 = 0.25.
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Example

It may seem impossible that the proportion of people who get the
right answer is exactly chance level (p = 0.25).

However, recall that our framework requires that there be strong
evidence in order to reject this notion.

We are not trying to conclude that p = 0.25 (we don’t tend to
conclude the null hypothesis).

If the proportion is 0.2501 rather than exactly 0.25, we haven’t
really learned anything interesting.
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Hypothesis Testing Using Confidence Intervals

We will use the Rosling responses data set to evaluate the
hypothesis test evaluating whether college-educated adults get a
question about infant vaccination correct.

The question posed is: How many of the world’s 1 year old children
today have been vaccinated against some disease?

1 20%

2 50%

3 80%
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Example

We want to know if the proportion of college-educated adults who
get the question correct is different from 33.3%.

The data set summarizes the answers of 50 college-educated adults.

Of these 50 adults, 24% of respondents got the question correct
(80% of 1 year olds have been vaccinated against some disease).
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Example

Now that we have data, we might wonder if the data provide strong
evidence that the proportion of college-educated adults is different
than 33.3%.

We know that there is fluctuation from one sample to another.

We also know that it is unlikely that p̂ will exactly equal p.

Still, we want to draw a conclusion about p.

Sections 5.3 & 6.1 August 21, 2019 17 / 64



Example

We need to know if our sample statistic p̂ = 0.24

suggests that the true proportion is something other than
p = 0.333

OR

if this deviation is due to random chance.

We know how to quantify the uncertainty in our estimate using
confidence intervals. How can we apply this concept to hypothesis
tests?
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Example

Construct a 95% confidence interval for p using the Rosling

responses data.
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Example

First we need to confirm that the Central Limit Theorem applies to
this data.

np̂ = 50× 0.24 = 12 ≥ 10

and
n(1− p̂) = 50× 0.76 = 38 ≥ 10

The success-failure condition holds, so we can move on to building our
interval.
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Example

The point estimate is p̂ = 0.24.

α = 1− 0.95 = 0.05

The critical value is z0.05/2 = z0.025 = 1.96

The standard error is

SEp̂ =

√
p̂(1− p̂)

n
= 0.060
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Example

Then

p̂± zα/2 × SEp̂
0.24± 1.96× 0.060

which is the interval (0.122, 0.358).

We can be 95% confident that the proportion of college-educated
adults to correctly answer the infant vaccination question is between
12.2% and 35.8%.
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Hypothesis Testing Using Confidence Intervals

So we have a confidence interval... now what?

Our interval is (0.122, 0.358).

We are interested in the null value p0 = 0.333.

Notice that p0 = 0.333 falls within our interval.

Therefore p0 = 0.333 is in our range of plausible values.

Since p0 = 0.333 is one of our plausible values, we cannot say that the
null value is implausible.
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Example

Note that we cannot make the claim that college-educated adults
simply guess on this question!

Failing to reject H0 is not the same thing as concluding H0.

There are still lots of other plausible values that are different from
p0 = 0.333!

It is possible that there is a difference that we were unable to
detect with this particular study.
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Double Negatives in Statistics

We use a lot of double negatives when talking about hypotheses.

We might say things like

”the null hypothesis is not implausible”
”we failed to reject the null hypothesis”

We use these to say that we are not rejecting, but are also not
accepting, the null.
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Hypothesis Testing Using Confidence Intervals

Essentially, if p0 is within the interval p̂±MoE, then we do not reject
the null hypothesis.

If p0 is not within the interval p̂±MoE, then we reject the null
hypothesis and conclude the alternative.
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Decision Errors

It is entirely possible that we make the right conclusion based on
our data... but the wrong conclusion based on the true (unknown)
parameter!

In our criminal court example, sometimes people are wrongly
convicted. Other times, guilty people are not convicted at all.

Unlike in the courts, statistics gives us the tools to quantify how
often we make these sorts of errors.
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Decision Errors

There are two competing hypotheses: null and alternative.

In a hypothesis test, we make some statement about which might
be true.

There are four possible scenarios. We can
1 Reject H0 when H0 is false.
2 Fail to reject H0 when H0 is true.
3 Reject H0 when H0 is true (error).
4 Fail to reject H0 when H0 is false (error).
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Decision Errors

Test Conclusion
Do not reject H0 Reject H0

Truth
H0 true Correct Decision Type I Error
H0 false Type II Error Correct Decision

A Type 1 Error is rejecting H0 when it is actually true.

A Type 2 Error is failing to reject H0 when the HA is actually
true.
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Example

Let’s think about our criminal court example. Recall that the null
hypothesis is innocence.

A Type I error is when we decide that a person is guilty, even
though they are innocent.

A Type II error is when we decide that we do not have enough
evidence to say that someone is guilty, but they are in fact guilty.
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Example

How could we reduce the Type 1 Error rate in US criminal courts?

To lower the Type 1 Error rate, we might raise our standard for
conviction from “beyond a reasonable doubt” to “beyond a conceivable
doubt” so fewer people would be wrongly convicted.
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Example

What influence might this have on the Type 2 Error rate?

Raising our standard for conviction would also make it more difficult to
convict the people who are actually guilty, so we would make more
Type 2 Errors.
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Error Trade-Offs

In general, reducing the Type I error rate increases the Type II
error rate.

Similarly, reducing the Type II error rate increases the Type I
error rate.

We see a lot of these trade-offs in statistics.
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Decision Errors

Hypothesis testing is built around rejecting or failing to reject the
null hypothesis.

But when do we have ”strong enough” evidence?

We usually build our tests around Type I error.

If the null is actually true, we do not want to incorrectly reject any
more than, say 5% of the time.

This corresponds to a significance level of α = 0.05
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Significance Levels

We talked about significance level α in our discussion about confidence
intervals. It comes into play again here!

The significance level indicates how often the data will lead us to
incorrectly reject H0

This is also how often we commit a Type I error!

In fact, α is the probability of committing such an error

α = P (Type I error)
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Significance Levels

If we use a 95% confidence interval for hypothesis testing and the null
is true,

The significance level is α = 0.05.

We make an error whenever the point estimate is at least 1.96
standard errors away from the population parameter.

This happens about 5% of the time
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Hypothesis Testing Using Confidence Intervals

Confidence intervals can be very useful in hypothesis testing.

However, sometimes we are unable to construct a confidence
interval.

For example, what if we wanted to consider something like

H0 : p1 = p2 = p3 = p4

Therefore we want to develop a more general hypothesis testing
framework.
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Formal Testing Using P-Values and Test Statistics

We want a way to consider the strength of the evidence against
the null hypothesis and in favor of the alternative hypothesis.

Instead of using confidence intervals, we use:

p-values.
test statistics.
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P-Values

The p-value is the probability of observing data at least as favorable
to the alternative hypothesis as our current data set, if the null
hypothesis were true.

We typically use a summary statistic of the data, in this section the
sample proportion, to help compute the p-value and evaluate the
hypotheses.
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Test Statistics

A test statistic is a value based on the sample data.

This is the z-score for the point estimate.

The test statistic can be used to find a p-value (and vice versa).

In a hypothesis testing framework, using the test statistic and using
the p-value are equivalent.
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Critical Value

We used critical values before when building confidence intervals:

zα/2

Critical values in the hypothesis testing framework are the same
idea.

If the null hypothesis is true, the critical value corresponds to
the maximum amount of Type I error allowed.
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Example: Coal

Pew Research asked a random sample of 1000 American adults whether
they supported the increased usage of coal to produce energy. Set up
hypotheses to evaluate whether a majority of American adults support
or oppose the increased usage of coal.
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Example: Coal

Let p be the true proportion who support coal.

The uninteresting result is that there is no majority either way.

In this case, half would support and half would oppose (p0 = 0.5).

Alternatively, there is a majority support or oppose.

H0 : p = 0.5

HA : p 6= 0.5
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Hypothesis Testing

We want to work with the normal distribution, so we need to
check our success-failure condition.

Whenever we use the Central Limit Theorem, we want to use the
true parameter but typically don’t have it.

With hypothesis testing, p0 is the proposed value for p.

We will therefore use p0 in place of p in our plug in method.
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Hypothesis Testing

We use p0 in place of p for good reason:

We are interested in how unlikely our observed statistic is under
the condition that the null hypothesis is true.

If the null hypothesis is true, then p = p0.
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Example: Coal

What would the sampling distribution of p̂ look like if the null
hypothesis were true?

We assume that our poll is based on a random sample, so independence
is satisfied. Using p0 to check our success-failure condition,

np0 = n(1− p0)
H0= 1000× 0.5 = 500

So we are comfortable working with a normal distribution.
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Example: Coal

Under the null hypothesis, the normal distribution for this context has
mean

µ
H0= p0 = 0.5

and standard error

SE
H0=

√
p0(1− p0)

n
= 0.016

Under the null hypothesis, p̂ ∼ N(0.5, 0.016).
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Example: Coal

Pew Research’s sample suggests that 37% of American adults
support increased usage of coal.

Does 37% represent a real difference from the null hypothesis of
50%?

Sections 5.3 & 6.1 August 21, 2019 48 / 64



Example: Coal

This is the sampling distribution under the null hypothesis. We call
this the null distribution.
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Example: Coal

If the null hypothesis were true, determine the chance of finding p̂ at
least as far into the tails as 0.37 under the null distribution
p̂ ∼ N(0.5, 0.016).
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Example: Coal

This is a normal probability problem where x = 0.37.

First, we draw a simple graph to represent the situation.

We know that p̂ is far in the tail, so the z-score should be far from
0.

Equivalently, this tail area should be quite small.
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Example: Coal

This Z-score is our test statistic.

ts = z =
p̂− p0
SE

=
0.37− 0.5

0.016
= −8.125

The observed proportion of 0.37 is over 8 standard deviations below
the mean! If the null distribution were true, there would be almost no
chance of seeing such an extreme observation.
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Example: Coal

To find the p-value, we find the corresponding tail area.

Using software, P (Z < −8.125) = 2.2× 10−16.

To account for values as least as extreme in the other tail area, we
double this value.

2× P (Z < −8.125) = 4.4× 10−16.

This means that there is essentially no chance that we would see a
proportion of 0.34 in a sample size of 1000 if the null distribution were
true!
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Calculating a Test Statistic

In general, for proportions where the Central Limit Theorem holds, the
test statistic is

ts = z =
p̂− p0
SE

=
p̂− p0√
p0(1−p0)

n
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Calculating a P-Value

Once you’ve calculated the test statistic, the p-value is

2× P (|Z| > |ts|)
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Hypothesis Testing Using Test Statistics

We compare the test statistic to the critical value to evaluate H0.

When the test statistic is more extreme than the critical value,

|ts| > |zα/2|

we reject H0. Otherwise, we do not reject H0.
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Hypothesis Testing Using P-Values

Equivalently, we may compare the p-value to α to evaluate H0.

When the p-value is less than the significance level,

p-value < α

we reject H0. Otherwise, we do not reject H0.
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Hypothesis Testing

If either
|ts| > |zα/2|

or
p-value < α

The data provide strong evidence supporting the alternative
hypothesis.

Otherwise, we report that we do not have sufficient evidence to reject
the null hypothesis. We will always describe the conclusion in the
context of the data.
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Example

A simple random sample of 1028 US adults in March 2013 show that
56% support nuclear arms reduction. Does this provide convincing
evidence that a majority of Americans supported nuclear arms
reduction at the 5% significance level?
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Example

Checking our conditions for normality,

Independence: this is a simple random sample.

Success-failure:

np0 = n(1− p0) = 514 ≥ 10

So we can model p̂ using a normal distribution.
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Example

Now we want to calculate the standard error:

SE =

√
p0(1− p0)

n
=

√
0.5× 0.5

1028
= 0.0156
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Example: Test Statistic Approach

The test statistic can be computed in terms of our null model:

ts = z =
p̂− p0
SE

=
0.56− 0.5

0.0156
= 3.75

The critical value for α = 0.05 is z0.05/2 = 1.64. Since

|3.75| > |1.96|

we can reject H0 at the α = 0.05 level of significance and conclude that
a majority of Americans support nuclear arms reduction.
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Example: P-Value Approach

The p-value is the probability of being more extreme than the observed
test statistic. We should draw a picture. Then using software:

2× P (Z > 3.75) = 0.0002

Since
p-value = 0.0002 < α = 0.05

we can reject H0 at the α = 0.05 level of significance and conclude that
a majority of Americans support nuclear arms reduction.
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Hypothesis Testing for a Single Proportion

Once you’ve determined a one-proportion hypothesis test is the correct
procedure, there are four steps to completing the test:

1 Identify the parameter of interest, list hypotheses, identify the
significance level, and identify p̂ and n.

2 Verify that p̂ is nearly normal under H0. Use the null value in
place of p.

3 If the conditions hold, compute the standard error under H0,
compute the Z-score, and (optionally) identify the p-value.

4 Evaluate by either comparing ts to zα/2 or p-value to α.

Make sure to provide your conclusion in the context of the problem!
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