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Regression Example

The faithful dataset in R has two measurements taken for the Old
Faithful Geyser in Yellowstone National Park:

eruptions: the length of each eruption

waiting: the time between eruptions

Each is measured in minutes.
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Regression Example

We want to see if we can use the wait time to predict eruption
duration.

eruptions will be the response variable.

waiting will be the predictor variable.
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Regression Example
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Regression Example

Using R, the estimated regression line for

eruptions = β0 + β1waiting + ε

is found to be
ŷ = −1.8740 + 0.0756x
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Regression Example
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Regression Example

In this data, waiting times range from 43 minutes to 96 minutes.

Let’s predict

eruption time for a 50 minute wait.
eruption time for a 10 minute wait.
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Regression Example

For waiting = x = 50,

ŷ = −1.8740 + 0.0756x

= −1.8740 + 0.0756× 50

= 1.906

So for a wait time of 50 minutes, the predicted average eruption time is
1.906 minutes.
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Regression Example

For waiting = x = 10,

ŷ = −1.8740 + 0.0756x

= −1.8740 + 0.0756× 10

= −1.118

So for a wait time of 10 minutes, the predicted average eruption time is
-1.118 minutes.
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Regression Example

But a predicted average eruption time of -1.118 minutes

1 doesn’t make sense.

2 is an extrapolation!

We do not want to make this prediction.
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Regression Example

This is the residual plot for the geyser regression. Do you see any
problems?
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Regression Example

This is a histogram of the residuals. Do they look normally distributed?
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Regression Example

Asking R for a summary of the regression model, we get the following:

Let’s pick this apart piece by piece.
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Regression Example

The first line shows the command used in R to run this regression
model.

The Residuals item shows a quartile-based summary of our
residuals.
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Regression Example

The F-statistic and p-value give information about the model
overall.

These are based on an F-distribution.

The null hypothesis is that all of our model parameters are 0 (the
model gives us no good info).

Since p-value< 2.2× 10−16 < α = 0.05, at least one of the
parameters is nonzero (the model is useful).
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Regression Example

Multiple R-squared is our squared correlation coefficient R2.

Ignore the adjusted R-squared and residual standard error for now.
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Regression Example

Finally, the Coefficients section gives us several pieces of
information:

1 Estimate shows the estimated parameters for each value.

2 Std. Error gives the standard error for each parameter estimate.

3 The t valuess are the test statistics for each parameter estiamte.

4 Finally, Pr(>|t|) are the p-values for each parameter estimate.
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Regression Example

The hypothesis test for each regression coefficient has hypotheses

H0 : βi = 0

HA : βi 6= 0

where i = 0 for the intercept and i = 1 for the slope.
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Regression Example

1 p− value < 2× 10−16 for b0 so we can conclude that the intercept
is nonzero.

2 p− value < 2× 10−16 for b1 so we conclude that the intercept is
also nonzero.

3 This means that the intercept and slope both provide useful
information when predicting values of y = eruptions.
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Difference of Two Proportions

We will extend the methods for hypothesis tests for p to methods
for p1 − p2.
This is the difference of proportions for two different groups or
populations.

The point estimate for p1 − p2 is p̂1 − p̂2.
We will develop a framework for use of the normal distribution
and a new standard error formula.
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Conditions for Normality

p̂1 − p̂2 may be modeled using a normal distribution when

The data are independent within and between groups.

This should hold if the data from from a randomized experiment or
from two independent random samples.

Success-failure condition holds for both groups.

n1p1 ≥ 10 and n1(1− p1) ≥ 10

and
n2p2 ≥ 10 and n2(1− p2) ≥ 10
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Standard Error

When the normality conditions hold, the standard error of p̂1 − p̂2 is

SE =

√
p1(1− p1)

n1
+
p2(1− p2)

n2

where p1 and p2 are the proportions and n1 and n2 are their respective
sample sizes.
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Confidence Intervals

We can again use our generic confidence interval formula

point estimate± critical value× SE

now as

p̂1 − p̂2 ± zα/2

√
p1(1− p1)

n1
+
p2(1− p2)

n2
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Confidence Intervals

The intervals are interpreted as before. E.g.,:

One can be 95% confident that the true difference in proportions is
between lower bound and upper bound.

Section 6.2 August 28, 2019 24 / 34



Hypothesis Tests: Example

A 30-year study was conducted with nearly 90,000 female
participants.

During a 5-year screening period, each woman was randomized to
one of two groups: regular mammograms or regular
non-mammogram breast cancer exams.

No intervention was made during the following 25 years of the
study, and we’ll consider death resulting from breast cancer over
the full 30-year period.
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Hypothesis Tests: Example

Over the 30-year period,

of the 44,925 women receiving mammograms, 500 died from breast
cancer.

of the 44,910 women receiving other cancer detection exams, 505
died from breast cancer.

Create a contingency table for these data.
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Hypothesis Tests: Example

Set up the hypotheses for these data.
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Special Case

When H0: p1 = p2, we use a special pooled proportion to check the
success-failure condition:

p̂pooled =
number of ”yes”

total number of cases
=
p̂1n1 + p̂2n2
n1 + n2

Note that this is usually the null hypothesis used in tests for two
proportions.
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Hypothesis Tests: Example

Let’s calculate p̂pooled or our mammograms example.

We will use this to check the success-failure condition.
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Pooled Standard Error

When H0: p1 = p2, the standard error is calculated as

SEpooled =

√
ppooled(1− ppooled)

n1
+
ppooled(1− ppooled)

n2
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Hypothesis Tests: Example

Let’s find the point estimate and standard error for our mammograms
example.
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Test Statistic

As before, the test statistic is calculated as

ts = z =
point estimate− null value

SE
=

(p̂1 − p̂2)− (null value)

SE
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Hypothesis Tests: Example

For our mammograms example, the null value is 0, so

ts = z =
(p̂1 − p̂2)
SE

The critical value is zα/2. At the 0.05 level of significance, z0.025 = 1.96.
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Hypothesis Tests: Example

Since |z0.025| = 1.96 > |z| = | − 0.17| = 0.17,

we fail to reject the null hypothesis.

there is insufficient evidence to suggest that mammograms are
either helpful or harmful.
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