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Decision Errors

It is entirely possible that we make the right conclusion based on
our data... but the wrong conclusion based on the true (unknown)
parameter!

In a criminal court, sometimes people are wrongly convicted.
Other times, guilty people are not convicted at all.

Unlike in the courts, statistics gives us the tools to quantify how
often we make these sorts of errors.
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Decision Errors

There are two competing hypotheses: null and alternative.

In a hypothesis test, we make some statement about which might
be true.

There are four possible scenarios. We can
1 Reject H0 when H0 is false.
2 Fail to reject H0 when H0 is true.
3 Reject H0 when H0 is true (error).
4 Fail to reject H0 when H0 is false (error).
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Decision Errors

Test Conclusion
Do not reject H0 Reject H0

Truth
H0 true Correct Decision Type I Error
H0 false Type II Error Correct Decision

A Type 1 Error is rejecting H0 when it is actually true.

A Type 2 Error is failing to reject H0 when the HA is actually
true.
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Example

Let’s think about criminal courts. The null hypothesis is innocence.

A Type I error is when we decide that a person is guilty, even
though they are innocent.

A Type II error is when we decide that we do not have enough
evidence to say that someone is guilty, but they are in fact guilty.
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Significance Levels

The significance level, α, indicates how often the data will lead us
to incorrectly reject H0

This is how often we commit a Type I error!

In fact, α is the probability of committing such an error

α = P (Type I error)
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Significance Levels

If we use a 95% confidence interval for hypothesis testing and the null
is true,

The significance level is α = 0.05.

We make an error whenever the point estimate is at least 1.96
standard errors away from the population parameter.

This happens about 5% of the time

Refresher: Section 5.3 October 2, 2019 7 / 29



Hypothesis Testing For One-Sample Means

We will start with the situation wherein we know that X ∼ N(µ, σ)
and the value of σ is known.
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Confidence Interval for µ

This (1− α)100% confidence interval for µ is

x̄± zα/2 ×
σ√
n

where σ/
√
n is the SE and zα/2 is again the critical value.
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Example

The following n = 5 observations are from a N(µ, 2) distribution. Find
a 90% confidence interval for µ.

1.1, 0.5, 2, 1.9, 2.7
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Example

Recall that when we say ”90% confident”, we mean:

If we draw repeated samples of size 5 from this distribution, then
90% of the time the corresponding intervals will contain the true
value of µ.
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Confidence Interval for µ

In practice, we typically do not know the population standard
deviation σ.

Instead, we have to estimate this quantity.

We will use the sample statistic s to estimate σ.

This strategy works quite well when n ≥ 30
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Confidence Interval for µ

This works quite well because we expect large samples to give us
precise estimates such that

SE =
σ√
n
≈ s√

n
.

Refresher: Section 7.1 October 2, 2019 13 / 29



Confidence Interval for µ

When n ≥ 30 and σ is unknown, a (1− α)100% confidence interval for
µ is

x̄± zα/2
s√
n

where we’ve plugged in s for σ.

Refresher: Section 7.1 October 2, 2019 14 / 29



Example

The average heart rate of a random sample of 60 students is found to
be 74 with a standard deviation of 11. Find a 95% confidence interval
for the true mean heart rate of the students.
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Hypothesis Testing for a Population Mean

We begin with the setting where n ≥ 30.

It is certainly possible to use the confidence interval to complete a
hypothesis test.

However, we also want to be able to use the test statistic and
p-value approaches.
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Hypothesis Testing for a Population Mean

For n ≥ 30, the test statistic is

ts = z =
x̄− µ0
s/
√
n

where again s/
√
n ≈ σ/

√
n because we are using a large sample.
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Hypothesis Testing for a Population Mean

There are five steps to carrying out these hypothesis tests:

1 Write out the null and alternative hypotheses.

2 Calculate the test statistic.

3 Use the significance level to find the critical value

OR

use the test statistic to find the p-value.

4 Compare the critical value to the test statistic

OR

compare the p-value to α.

5 Conclusion.
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Example

In its native habitat, the average density of giant hogweed is 5 plants
per m2. In an invaded area, a sample of 50 plants produced an average
of 11.17 plants per m2 with a standard deviation of 8.9. Does the
invaded area have a different average density than the native area?
Test at the 5% level of significance.
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Hypothesis Testing for a Population Mean

We now move to the situation where n < 30.

If n < 30 but we are dealing with a normal distribution and σ is known,

ts = z =
x̄− µ0
σ/
√
n

but we know that this will rarely (if ever) occur in practice!
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Introducing the t-Distribution

With a small sample size, plugging in s for σ can result in some
problems.

Therefore less precise samples will require us to make some
changes.

This brings us to the t-distribution.
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Introducing the t-Distribution

The t-distribution is a symmetric, bell-shaped curve like the normal
distribution.

However, the t-distribution has more area in the tails.
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The t-Distribution

The t-distribution:

Is always centered at zero.

Has one parameter: degrees of freedom (df).

For our purposes,
df = n− 1

where n is our sample size.
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The t-Distribution

The parameter df controls how fat the tails are.

Higher values of df result in thinner tails.

I.e., larger sample sizes make the t-distribution look more normal.

When n ≥ 30, the t-distribution will be essentially equivalent to
the normal distribution.

In practice, we often use t-tests even when n ≥ 30.
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Confidence Intervals for A Single Population Mean

When n < 30 and σ is unknown, we use the t-distribution for our
confidence intervals. A (1− α)100% confidence interval for µ is

x̄± tα/2,df ×
s√
n
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Critical Values for the t-Distribution

Let’s take a minute to look at the table of t-distribution critical values
that we will use.
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Test Statistics

The test statistic for the setting where n < 30 and σ is unknown is

ts = t =
x̄− µ0
s/
√
n

(two-sided hypotheses)
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P-Values

The p-value for two-sided hypotheses is then

2× P (tdf < −|ts|)
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Example

The following data is on red blood cell counts (in 106 cells per
microliter) for 9 people:

5.4, 5.3, 5.3, 5.2, 5.4, 4.9, 5.0, 5.2, 5.4

Test at the 5% level of significance if the average cell count is 5.
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