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Example

Estimate Std. Error t value Pr(> |t|)
(Intercept) 26.50 1.773 14.95 < 2e-16
trt -48.20 0.159 -303.71 < 2e-16
sexM -0.63 0.159 -3.99 7.23e-05
age 0.02 0.012 1.29 0.197
weight -0.01 0.003 -2.45 0.015
sys.bp -0.15 0.006 -27.44 < 2e-16
dia.bp -0.11 0.010 -10.84 < 2e-16
incomelow -0.23 0.227 -1.01 0.314
incomemed -0.05 0.238 -0.19 0.848
ldl.pre 0.99 0.008 126.16 < 2e-16

Write out the regression model.
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Example

Interpret the coefficients corresponding to sexM and age.

Calculate the residual for the first patient.

ldl.post trt sex age weight sys.bp dia.bp income ldl.pre
1 176 0 M 47 186 119 64 low 178
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Example

The estimated linear regression line for LDL.post = β0 + β1trt is

ˆLDL.post = 175.0309− 49.0756× trt.

with SE(b1) = 0.6657.

Why is this different from the estimate and standard error for trt in
the multiple regression model?
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Correlation Between Predictor Variables

We say the two predictor variables are collinear when they are
correlated.

This complicates model estimation.

We can’t always prevent collinearity, but we do want to control it.

Ex: height and arm span give us essentially the same information.
We wouldn’t want to use both in a model.
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Goodness-of-Fit

Recall that we used R2 to determine the amount of variability
explained by the model:

R2 = 1− variability in residuals

total variability
= 1− SSresiduals

SStotal

We can continue to use this in multiple regression.
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Goodness-of-Fit

R2 will always increase when we include more variables in the
model.

This is true even if the variables aren’t very useful!

We want a measure that will help us balance model efficacy with
model size.
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Adjusted R2

Adjusted R2 is computed as

R2
adj = 1− SSresid/(n− k − 1)

SStotal/(n− 1)

where n is the number of observations and k is the number of predictor
variables in the model.

Note that k includes the p− 1 predictor variables for categorical
variables with p levels.
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Adjusted R2

Notice that

R2
adj = 1− SSresid

SStotal
× (n− 1)

(n− k − 1)

and

R2 = 1− SSresid
SStotal

Since k ≥ 1, R2
adj < R2.
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Adjusted R2

The idea here lies with degrees of freedom.

We adjust R2 based on model and error df.

This balances efficacy and model size (what we wanted).

This will also help us compare models.
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Model Selection

We want models to balance efficacy and size.

In multiple linear regression, model selection refers to ”pruning”
variables that are less important.

Models that have been optimized in this way are referred to as
parsimonious.

(Think parsimonious = ”frugal”.)

The model that includes all possible variables is called the full
model.
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Identifying Unhelpful Variables

The full model:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 26.50 1.773 14.95 < 2e-16
trt -48.20 0.159 -303.71 < 2e-16
sexM -0.63 0.159 -3.99 7.23e-05
age 0.02 0.012 1.29 0.197
weight -0.01 0.003 -2.45 0.015
sys.bp -0.15 0.006 -27.44 < 2e-16
dia.bp -0.11 0.010 -10.84 < 2e-16
incomelow -0.23 0.227 -1.01 0.314
incomemed -0.05 0.238 -0.19 0.848
ldl.pre 0.99 0.008 126.16 < 2e-16

Multiple R-squared: 0.9913, Adjusted R-squared: 0.9912
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Identifying Unhelpful Variables

Removing income:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 26.41 1.767 14.95 < 2e-16
trt -48.20 0.159 -303.84 < 2e-16
sexM -0.62 0.159 -3.91 9.82e-05
age 0.02 0.012 1.29 0.196
weight -0.01 0.003 -2.49 0.013
sys.bp -0.15 0.006 -27.62 < 2e-16
dia.bp -0.10 0.010 -10.83 < 2e-16
ldl.pre 0.99 0.008 126.21 < 2e-16

Multiple R-squared: 0.9913, Adjusted R-squared: 0.9912
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Identifying Unhelpful Variables

We find that the models have the same R2
adj !

Which one should we choose?

Should we remove more variables?
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Identifying Unhelpful Variables

What if we remove trt?

Estimate Std. Error t value Pr(> |t|)
(Intercept) -22.61 17.060 -1.33 0.185
sexM -0.29 1.537 -0.19 0.853
age 0.05 0.113 0.47 0.636
weight 0.002 0.026 0.07 0.947
sys.bp -0.15 0.054 -2.79 0.005
dia.bp -0.08 0.094 -0.86 0.389
ldl.pre 1.10 0.076 14.46 < 2e-16

Multiple R-squared: 0.1783, Adjusted R-squared: 0.1733

Section 9.2 November 13, 2019 15 / 22



Model Selection Strategies

We will discuss two common model selection approaches:

1 Forward Selection

2 Backward Elimination

These are referred to as step-wise model selection.
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Backward Elimination

Backward elimination starts with the full model.

Variables are removed one-at-a-time until R2
adj stops improving.

At each step, we want to remove the least useful variable.
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Example

Consider a data set on various loans. We want to predict the interest
rate. The available variables are

interest rate: loan interest rate

income var: whether income source & amount verified. Takes
values verified, source only, and not.

debt to income: ratio of debt to income

credit util: proportion of credit being utilized

bankruptcy: whether borrower has previous bankruptcy

term: length of loan (months)

issued: month and year loan issued

credit checks: number of credit checks in last 12 months
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Example: Backward Selection

The full model is

There are n = 10000 cases in this data set. The variance of the
residuals is 18.53, and the variance of the total price is 25.01.
Calculate R2 and R2

adj .
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Example: Backward Selection

Can we drop a variable and improve R2
adj?

We got a baseline R2
adj on the previous slide.

Variables are eliminated one-at-a-time from the full model.

R2
adj is checked each time.

We move forward with the model with the highest R2
adj
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Example: Backward Selection

After checking the R2
adj for each potential variable removal, we remove

issued.

Now we repeat the process with the model with issued removed.

Our new baseline R2
adj is 0.25854.
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Example: Backward Selection

So our final model is

Write the regression model for these results.
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