Consider the simple case where \(y = \beta_0 + \beta_1x + \epsilon\).
\[\begin{aligned} \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1\bar{x} \\ \hat{\beta}_1 &= \frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^n(x_i-\bar{x})^2} \\ &= \frac{s_{xy}}{s_x^2} \\ &= r_{xy}\frac{s_y}{s_x} \end{aligned}\]
Notice how the sample correlation, covariance, variances, and coefficients are all related.