Multiple Linear Regression

Prof. Lauren Perry

Multiple Linear Regression

In practice, X is usually composed of more than one predictor variable.

- ▶ Multiple linear regression will allow us to deal with multiple inputs.
 - ▶ Want to put all useful inputs into the model at once.
- ▶ It also allows us to better model the case where the relationship between X and Y is not linear.

Multiple Linear Regression

For *p* distinct predictors, the linear regression model takes the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

where X_j is the *j*th predictor and β_j quantifies the association between that variable and the response.

We say that β_j is the average change in Y for a one unit increase in X_j , holding all other predictors fixed.

Estimating the Regression Coefficients

We make predictions using the formula

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

and we again estimate our parameters by minimizing the sum of squared residuals

$$\mathsf{RSS} = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

the solutions to which are most easily represented using matrix algebra.

Matrix Representation

$$\sum \epsilon_i^2 = \epsilon^T \epsilon = (y - X\beta)^T (y - X\beta)$$

We can repeat the least squares estimation process for this representation by again taking derivatives with respect to β_0 and β_1 .

Estimating the Regression Coefficients

Usually, we will find these coefficients using R:

```
ads <- read.csv("C:/Users/cappiello/OneDrive - California State University
mod1 <- lm(sales ~ TV + radio + newspaper, data=ads)
round(mod1$coefficients,3)</pre>
```

```
## (Intercept) TV radio newspaper
## 2.939 0.046 0.189 -0.001
```

(Recall that the advertising data is in *thousands*.)

Estimating the Regression Coefficients

```
summary(mod1)
```

produces the following:

```
Coefficient Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        0.311908
                                   9.422
                                            <2e-16 ***
             2.938889
TV
             0.045765
                        0.001395
                                  32.809
                                            <2e-16 ***
             0.188530
                        0.008611
                                  21.893
                                            <2e-16 ***
radio
            -0.001037
                        0.005871
                                  -0.177
                                              0.86
newspaper
```

Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response Y?

- This is a little more complex than in the simple linear regression setting, where we could just examine β_1 .
- ► Here, we test

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

versus

 H_a : at least one β_i is non-zero

This test uses an F-statistic:

$$F = \frac{(\mathsf{TSS} - \mathsf{RSS})/p}{\mathsf{RSS}/(n-p-1)}$$

where again TSS = $\sum (y_i - \bar{y})^2$ and RSS = $\sum (y_i - \hat{y}_i)^2$.

When there is no relationship between the predictors, we expect the F ratio to be close to 1.

In R, the command summary(mod1) also produces the following:

Residual standard error: 1.686 on 196 degrees of freedom

Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956

F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16

Examining A Subset of Coefficients

Sometimes, we have reason to test whether a particular subset of q of the p coefficients are zero:

 H_0 : all of the q coefficients are zero

Here, we fit a second model that uses all of the variables except for the q variables of interest.

 \blacktriangleright We call this model's residual sum of squares RSS₀. Then

$$F = \frac{(\mathsf{RSS}_0 - \mathsf{RSS})/q}{\mathsf{RSS}/(n-p-1)}$$

- ► The p-values provided earlier in the coefficient output correspond to the setting where the single corresponding variable is omitted.
 - i.e., the partial effect of adding that variable to the model.

If at least one coefficient has a small p-value, why do we still need to look at the overall F-statistic?

- About 5% of the p-values associated with each variable will be below 0.05 *just by chance*.
- So, with a lot of predictors, it's relatively likely that we would see small p-values even if there is no association between the predictors and the response.
 - ▶ The F-statistic adjusts for number of predictors, so it doesn't have this problem.
- ► Thus, we want to examine overall model fit as well as the significance of each coefficient.

Deciding on Important Variables

Once we've decided the model is useful overall, we want to figure out *which* predictors are useful.

- We could just look at the p-values for each coefficient, but this can lead to some issues.
 - Ex: if *p* is large, we may make some false discoveries.
- Instead, we use variable selection methods.

Variable Selection Methods

The ideal approach is to examine models for all possible subsets of the predictors.

We can then compare these models using statistics like

- 1. Mallow's C_p
- 2. Akaike information criterion (AIC)
- 3. Bayesian information criterion (BIC)
- 4. Adjusted R^2

These are studied more extensively in Chapter 6.

Variable Selection Methods

Unfortunately, examining all possible subsets isn't always feasible.

- For p = 2 predictors, there are four possible models:
 - $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$
 - $Y = \beta_0 + \beta_1 x_1 + \epsilon$
 - $Y = \beta_0 + \beta_2 x_2 + \epsilon$
 - $Y = \beta_0 + \beta_2 \lambda_2 + \beta_0 + \epsilon$
- But the number of possible models grows quickly!
- ▶ For p input variables, there are a total of 2^p possible subsets.

Variable Selection Methods

We need a way to automate variable selection that doesn't require us to examine all possible subsets.

Unfortunately, the methods discussed at this point in the textbook tend to lead to a variety of problems, so we will hold off on other options until Chapter 6.

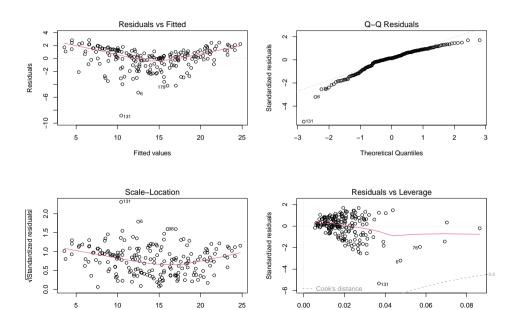
Model Fit

- ightharpoonup Correlation R and the coefficient of determination R^2 are conceptually the same for multiple linear regression.
- ▶ However, R² will always increase as more variables are added to the model.
- ▶ Instead, we will use an *adjusted* R^2 value that takes into account the number of input variables p.

$$R_{adj}^2 = 1 - \left[\left(rac{n-1}{n-p-1}
ight) (1-R^2)
ight]$$

- ▶ We interpret R_{adi}^2 the same way as R^2 .
- This value is shown in the regression model summary output in R.

We can also examine graphical summaries for model fit.



Predictions

It's straightforward to plug in values of X to the estimated regression line.

Sources of error/uncertainty:

- 1. The coefficients are estimates, so $\hat{f}(X)$ is only an estimate for f(X).
 - ► A source of reducible error.
 - We can calculate confidence intervals for \hat{Y} .
- 2. In practice, assuming linearity is probably only an approximation.
 - Another source of reducible error, model bias.
 - We generally ignore this if the model is "good enough".
- 3. Random error ϵ .
 - Irreducible error.
 - We can also calculate *prediction intervals* for \hat{Y} .

Prediction Intervals

- Confidence intervals quantify uncertainty for a mean.
 - For a 95% CI, we say that 95% of intervals of that form will contain the true value of f(X).
 - ▶ I.e., the *average* outcome *y* for a point *x*.
- ▶ Prediction intervals quantify uncertainty for a *single point*.
 - ► For a 95% PI, we say that 95% of intervals of that form will contain the true value of Y for a specific point.
 - ▶ I.e., the *specific* outcome *y* for a point *x*.