Quantitative Predictors and Interactions

Prof. Lauren Perry

So far, we've focused on only quantitative predictors.

Often, data sets have one or more *qualitative* predictors.

We need to consider how to fit these into a numeric model fitting context.

Qualitative Predictors with Two Levels

Consider the variable Own from the Credit data.

```
credit <- read.csv("C:/Users/cappiello/OneDrive - California State Univers
own <- as.factor(credit$Own)
summary(own)</pre>
```

No Yes ## 193 207

To put this into a regression model, we use a *dummy variable*:

 $x_i = I$ (the *i*th person owns a house)

Qualitative Predictors with Two Levels

This results in the model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

which takes values

$$\triangleright \beta_0 + \beta_1 + \epsilon_i$$
 if the *i*th person owns a house.

and

 \triangleright $\beta_0 + \epsilon_i$ if the *i*th person does not own a house.

So β_1 is the average difference in credit card balance between owners and non-owners.

Qualitative Predictors with Two Levels

```
summary(lm(Limit ~ Own, data = credit))
```

Coefficients:	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	4713.17	166.35	28.333	<2e-16	***
OwnYes	43.35	231.24	0.187	0.851	

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2311 on 398 degrees of freedom
Multiple R-squared: 8.83e-05, Adjusted R-squared: -0.002424
F-statistic: 0.03515 on 1 and 398 DF, p-value: 0.8514
```

Qualitative Predictors with More than Two Levels

Consider the variable region from the Credit data.

East South West ## 99 199 102

We can represent this by constructing two dummy variables.

 $x_{i,1} = I(i$ th person is from the South) $x_{i,2} = I(i$ th person is from the West) Qualitative Predictors with More than Two Levels

Using region to predict credit,

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \epsilon_i$$

Why only two dummy variables? Consider:

- ▶ If the *i*th person is from the South, $y_i = \beta_0 + \beta_1 x_{i,1} + \epsilon_i$.
- ▶ If the *i*th person is from the West, $y_i = \beta_0 + \beta_2 x_{i,2} + \epsilon_i$
- ▶ If the *i*th person is from the East, $y_i = \beta_0 + \epsilon_i$

So each factor is represented in the model.

Because East has no dummy variable, it is known as the baseline.

Qualitative Predictors with More than Two Levels

summary(lm(Limit ~ Region, data = credit))

Coefficients:	Estimate Std.	Error t	value Pr	(> t)	
(Intercept)	4881.6	232.4	21.009	<2e-16	***
RegionSouth	-153.1	284.3	-0.539	0.590	
RegionWest	-273.8	326.2	-0.839	0.402	
Signif. codes:	: 0 '***' 0.00	01'**'	0.01'*'	0.05'.'	0.1 ''
Residual stand	lard error: 231	12 on 39	7 degrees	s of free	edom
Multiple R-squ	uared: 0.00178	31, Adju	sted R-so	uared:	-0.003248

1

F-statistic: 0.3541 on 2 and 397 DF, p-value: 0.702

Qualitative Predictors

We can also use this approach for a mix of qualitative and quantitative variables in a model.

mod2 <- lm(Limit ~ Income + Rating + Own + Region, data=credit)
summary(mod2)</pre>

Coefficients	s: Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-539.62205	30.68155	-17.588	<2e-16	***
Income	0.55281	0.42508	1.300	0.194	
Rating	14.77373	0.09685	152.545	<2e-16	***
OwnYes	2.78064	18.30426	0.152	0.879	
RegionSouth	0.71509	22.49522	0.032	0.975	
RegionWest	18.21038	25.82151	0.705	0.481	

Sometimes, two predictor variables *interact* in their impact on the outcome.

Example:

- Suppose spending money on TV advertising increases the effectiveness of radio advertising.
- We want a way to let β_{radio} vary based on values of TV...

Accounting for Interactions

Consider

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

How does this let β_{radio} vary based on values of $X_2 = TV$?

$$Y = \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon$$
$$= \beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 + \epsilon$$

We can interpret β_3 as the increase in effectiveness of TV advertising associated with a one-unit increase in radio advertising (or vice versa).

Consider: Why does estimating the coefficients not require any changes to our least squares approach?

Advertising <- read.csv("~/Courses/STAT 196M/datasets/Advertising.csv")
mod3 <- lm(sales ~ TV + radio + TV*radio, data=Advertising)
summary(mod3)</pre>

Coefficients:Estimate Std. Error t value Pr(>|t|)(Intercept)6.750e+002.479e-0127.233<2e-16</td>***TV1.910e-021.504e-0312.699<2e-16</td>***radio2.886e-028.905e-033.2410.0014**TV:radio1.086e-035.242e-0520.727<2e-16</td>***

Residual standard error: 0.9435 on 196 degrees of freedom Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673 F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16 Consider R_{adi}^2 for the main effects model:

Advertising <- read.csv("~/Courses/STAT 196M/datasets/Advertising.csv")
mod4 <- lm(sales ~ TV + radio, data=Advertising)
summary(mod4)</pre>

Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept)2.921100.294499.919<2e-16 ***</td>TV0.045750.0013932.909<2e-16 ***</td>radio0.187990.0080423.382<2e-16 ***</td>

Residual standard error: 1.681 on 197 degrees of freedom Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962 F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16 In general, if we include an interaction term in a model, we also include the main effects *even if the p-values associated with the main effects are not significant*.

Consider Credit Balance predicted by Income and Student status.

The interaction allows the model for students to have a different slope than the model for non-students, while the main effects model only allows for different intercepts.

Horsepower

Nonlinear Relationships Between Predictors and Outcome

How can we deal with this using *linear* regression?

- The model fit requires the model to be linear with respect to β .
- This is much like including X₁X₂ in the model by creating a "new variable" in the matrix X.
- Here, we just construct a "new variable", say, X_1^2 in X.

Nonlinear Relationships Between Predictors and Outcome

mod5 <- lm(mpg ~ poly(horsepower, 2), data = Auto)
summary(mod5)</pre>

Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 23.44590.2209 106.13 <2e-16 *** poly(horsepower, 2)1 -120.1377 4.3739 -27.47 <2e-16 *** poly(horsepower, 2)2 44.0895 4.3739 10.08 <2e-16 *** Residual standard error: 4.374 on 389 degrees of freedom Multiple R-squared: 0.6876, Adjusted R-squared: 0.686 F-statistic: 428 on 2 and 389 DF, p-value: < 2.2e-16

Horsepower