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Potential Problems

1. Non-linearity of the response-predictor relationships.
2. Correlation of error terms.
3. Non-constant variance of error terms.
4. Outliers and high-leverage points.
5. Collinearity.



1. Non-linearity of the response-predictor relationships.

▶ We can examine non-linearity using residual plots.
▶ Ideally, these will show no discernible pattern (random scatter).
▶ We can work on fixing this problem by transforming the predictors:

▶ Ex: log X ,
√

(X ), X 2, etc.



Example Residual Plots Showing Non-Linearity
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Residual Plot for Linear Fit
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2. Correlation of Error Terms

Assumption: error terms ϵ1, ϵ2, . . . , ϵn are uncorrelated.

▶ That is, knowing something about ϵi , doesn’t tell us anything about ϵi+1.
▶ Our standard error calculations rely on this.

▶ Violations tend to result in std error being underestimated.
▶ This causes erroneously narrow confidence/prediction intervals.

▶ These correlations can occur for data that is time dependent.
▶ We should use different modeling techniques for this type of data.



3. Non-constant variance of error terms.

Assumption: error terms have constant variance, Var(ϵi) = σ2.

▶ We can check for homoscedasticity using residual plots.
▶ There should be no discernible pattern in the variability.
▶ Standard errors rely on this assumption.
▶ This assumption is often violated, but we can usually fix (or at least improve) it!
▶ We work on fixing this problem by transforming the outcome variable:

▶ Ex: log Y ,
√

(Y ), Y 2, etc.



Example Residual Plot - Before and After log(Y) Transformation
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4. Outliers and High-Leverage Points

An outlier is a point for which yi is far from the value predicted by the model.

▶ If we think the outlier resulted from an error in data collection, we can remove it.
▶ . . . but there is nothing inherently wrong with outliers.

From a model fitting perspective, we are much more interested in high-leverage points.

▶ These are observations which have a significant individual impact on the
regression line.
▶ We can examine this by removing a point from the data and refitting the model, and

then examining how much the regression line changed.
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6. Collinearity
Collinearity is the situation in which one or more predictor variables are closely related
to one another.
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Collinearity

When two variables are collinear:

▶ It can be difficult to separate out their individual effects on the response.
▶ The accuracy of regression coefficient estimates is decreased.
▶ Standard error is increased, which shrinks the test statistics (toward 0).

▶ This results in larger p-values and potentially a failure to reject H0.



Dealing with Collinearity

▶ Examine the correlation matrix for the predictors.

. mpg cyl disp hp wt acc yr orgn

mpg 1.00 -0.78 -0.81 -0.78 -0.83 0.42 0.58 0.57

cyl -0.78 1.00 0.95 0.84 0.90 -0.50 -0.35 -0.57

disp -0.81 0.95 1.00 0.90 0.93 -0.54 -0.37 -0.61

hp -0.78 0.84 0.90 1.00 0.86 -0.69 -0.42 -0.46

wt -0.83 0.90 0.93 0.86 1.00 -0.42 -0.31 -0.59

acc 0.42 -0.50 -0.54 -0.69 -0.42 1.00 0.29 0.21

yr 0.58 -0.35 -0.37 -0.42 -0.31 0.29 1.00 0.18

orgn 0.57 -0.57 -0.61 -0.46 -0.59 0.21 0.18 1.00



Multicollinearity

Sometimes, we can run into collinearity between three or more variables that will not
appear in the two-way correlations shown in the correlation matrix.

▶ To examine possible multicollinearity, we compute the variance inflation factor
(VIF).
▶ This is the ratio of (variance of β̂j when fitting the full model) to (the variance of β̂j

if fit on its own).
▶ The minimum value for VIF is 1.
▶ There are different ideas for what constitutes a “high” VIF, but people often use 5 or

10.



Multicollinearity

cylinders displacement horsepower

10.737535 21.836792 9.943693

weight acceleration year origin

10.831260 2.625806 1.244952 1.772386

▶ Now what?



Multicollinearity

Let’s try removing the variable with the highest VIF:

cylinders horsepower weight

6.008253 9.088413 9.219674

acceleration year origin

2.598356 1.239409 1.594220

▶ Notice that removing displacement also slightly improved the VIF for all the
other variables!

▶ At this point, we can stop (if we’re using 10) or try removing another variable.



Multicollinearity

Let’s try removing one more variable (displacement):

## cylinders horsepower acceleration year origin
## 4.155143 5.323311 1.996560 1.209909 1.495100

▶ That made a big difference!



The Final Model
Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.87876 5.05154 -1.560 0.12

cylinders -1.22202 0.22524 -5.425 1.02e-07 ***

horsepower -0.08815 0.01130 -7.802 5.75e-14 ***

acceleration -0.40305 0.09654 -4.175 3.69e-05 ***

year 0.66601 0.05628 11.833 < 2e-16 ***

origin 1.82772 0.28612 6.388 4.84e-10 ***

---

Residual standard error: 3.727 on 386 degrees of freedom

Multiple R-squared: 0.7749, Adjusted R-squared: 0.772

F-statistic: 265.7 on 5 and 386 DF, p-value: < 2.2e-16


