2.1 What is Statistical Learning?

Prof. Lauren Perry

Motivating Example

Goal: think about how to increase sales by investigating association between product advertising and sales.

Sales (thousands of units) for various advertising types in 200 different markets.

Some Terminology

- \blacktriangleright The client has no control over sales, so this is the *output variable*.
	- \blacktriangleright Also called the response or dependent variable.
- \triangleright By contrast, advertising is the *input variable*.
	- \blacktriangleright Also called predictors, independent variables, features, or just variables.

Notation

Response: Y

Predictors: X_1, X_2, \ldots, X_p

Some relationship between Y and $X = (X_1, X_2, \ldots, X_p)$:

$$
Y = f(X) + \epsilon
$$

where

 \blacktriangleright f is some fixed, unknown function \triangleright ϵ is a random error term such that $\epsilon \perp \!\!\! \perp X$ and $\mathsf{E}(\epsilon) = 0$.

Motivating Example

With our sales (Y) and advertising data TV (X_1) , radio (X_2) , and newspaper (X_3) , the model

$$
Y = f(X) + \epsilon
$$

- \blacktriangleright allows us to make predictions about sales.
- **If** gives us insight into which components of $X = (X_1, X_2, X_3)$ are important to explaining Y .
- **If** may give us information about how each component X_i affects Y (depending on complexity of f).

Often we have a set of values X , but not Y .

We predict values of Y using

$$
\hat{Y}=\hat{f}(X)
$$

 \triangleright We may or may not be concerned with the actual form of \hat{f} .

This depends on two quantities:

Reducible error: \hat{f} is not a perfect estimate of f, but we can improve it by improving our estimating techniques.

Irreducible error: the variability associated with Y (which comes from the random variable ϵ), which we cannot reduce.

 \triangleright We will always have this error, which is generally due to unmeasured (or unmeasurable) variables.

We can show that

$$
E(Y - \hat{Y})^2 = E[f(X) + \epsilon - \hat{f}(X)]^2 = [f(X) - \hat{f}(X)]^2 + Var(\epsilon)
$$

reducible error $+$ irreducible error.

This course will focus on techniques to estimate f and minimize reducible error.

Inference

Sometimes, we are also interested in the association between Y and X.

- \triangleright Which predictors X_i are associated with the response Y?
- \blacktriangleright What is the relationship between Y and each X_i ?
- **I.** Can the relationship between Y and each X_i be summarized using a linear equation, or is the relationship more complicated?

This requires us to know the exact form of \hat{f} .

Inference

Examples:

- \triangleright Which health measures are associated with heart disease risk?
- \triangleright Which health measure is associated with the largest decrease in heart disease risk?
- \blacktriangleright How much of an increase in heart disease risk is associated with a given increase in number of cigarettes smoked per day?

Often, we want to do both inference *and* prediction for a given problem.

Estimating f : Parametric Methods

Step 1:

 \blacktriangleright Make an assumption about the functional form of f.

Example: f is linear in X :

$$
f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p
$$

Estimating f : Parametric Methods

Step 2:

 \triangleright Use the training data to fit/train the model.

 \blacktriangleright In the linear model

$$
f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p
$$

we must estimate the *p* coefficients β_1 , β_2 , ..., β_p .

Parametric models reduce the problem of estimating f down to estimating a set of parameters.

Pro: (significantly) simplifies the problem of estimating f .

- \triangleright Con: the model chosen is probably not the true form of f.
	- \triangleright We can improve our model by making it more flexible...
	- \blacktriangleright ... but more flexible models run the risk of *overfitting* (fitting the noise too closely).

We will learn about specific parametric models in the next couple chapters.

Nonparametric methods make no explicit assumptions about the functional form of f .

- \triangleright Goal: estimate f so that it gets close to the data points without being too "wiggly" (without overfitting).
- \triangleright Pro: can fit a much wider range of possible shapes for f.
- \triangleright Con: often require a large number of observations to obtain accurate estimates.

We will learn more about nonparamteric methods in later chapters.

If we have enough data, why would we ever use a less flexible parametric approach?

- \triangleright Restrictive models tend to be much more interpretable (wrt inference).
	- \triangleright More complex methods may make it very difficult to understand the relationship between a predictor and the response.

If we're only interested in prediction, we may not have a strong reason to use a restrictive model.

 \blacktriangleright However, very flexible models can have a tendency to overfit the data, so we shouldn't always go straight to the most flexible approach possible!

Supervised versus Unsupervised Learning

- In supervised learning problems, we use a set of predictor variables X to predict some response variable Y using $Y = f(X) + \epsilon$.
- In unsupervised learning problems, we have a set of variable X , but we don't have a response variable.
	- \triangleright Want to understand the relationships between the variables/observations.
	- \triangleright Often we use some kind of *clustering* algorithm to group the observations.

A Simple Example of Unsupervised Learning

Eruption Time

Broadly,

- Regression models refer to models with a quantitative (numeric) response Y .
- \triangleright Classification models refer to models with a qualitative (categorical) response Y.

There is some nuance here, but we will worry about that on a case-by-case basis.