
2.1 What is Statistical Learning?

Prof. Lauren Perry



Motivating Example
Goal: think about how to increase sales by investigating association between product
advertising and sales.

Sales (thousands of units) for various advertising types in 200 different markets.



Some Terminology

I The client has no control over sales, so this is the output variable.
I Also called the response or dependent variable.

I By contrast, advertising is the input variable.
I Also called predictors, independent variables, features, or just variables.



Notation

Response: Y

Predictors: X1,X2, . . . ,Xp

Some relationship between Y and X = (X1,X2, . . . ,Xp):

Y = f (X ) + ε

where

I f is some fixed, unknown function
I ε is a random error term such that ε ⊥⊥ X and E(ε) = 0.



Motivating Example

With our sales (Y ) and advertising data TV (X1), radio (X2), and newspaper (X3),
the model

Y = f (X ) + ε

I allows us to make predictions about sales.
I gives us insight into which components of X = (X1,X2,X3) are important to

explaining Y .
I may give us information about how each component Xj affects Y (depending on

complexity of f ).



Estimating f : Prediction

Often we have a set of values X , but not Y .

We predict values of Y using
Ŷ = f̂ (X )

I We may or may not be concerned with the actual form of f̂ .



Prediction Accuracy

This depends on two quantities:

Reducible error: f̂ is not a perfect estimate of f , but we can improve it by improving our
estimating techniques.

Irreducible error: the variability associated with Y (which comes from the random
variable ε), which we cannot reduce.

I We will always have this error, which is generally due to unmeasured (or
unmeasurable) variables.



Prediction Accuracy

We can show that

E (Y − Ŷ )2 = E [f (X ) + ε− f̂ (X )]2 = [f (X )− f̂ (X )]2 + Var(ε)

reducible error + irreducible error.

This course will focus on techniques to estimate f and minimize reducible error.



Inference

Sometimes, we are also interested in the association between Y and X .

I Which predictors Xi are associated with the response Y ?
I What is the relationship between Y and each Xi?
I Can the relationship between Y and each Xi be summarized using a linear equation,

or is the relationship more complicated?

This requires us to know the exact form of f̂ .



Inference

Examples:

I Which health measures are associated with heart disease risk?
I Which health measure is associated with the largest decrease in heart disease risk?
I How much of an increase in heart disease risk is associated with a given increase in

number of cigarettes smoked per day?

Often, we want to do both inference and prediction for a given problem.



Estimating f : Parametric Methods

Step 1:

I Make an assumption about the functional form of f .
I Example: f is linear in X :

f (X ) = β0 + β1X1 + β2X2 + · · ·+ βpXp



Estimating f : Parametric Methods

Step 2:

I Use the training data to fit/train the model.
I In the linear model

f (X ) = β0 + β1X1 + β2X2 + · · ·+ βpXp

we must estimate the p coefficients β1, β2, . . ., βp.



Estimating f : Parametric Methods

Parametric models reduce the problem of estimating f down to estimating a set of
parameters.

I Pro: (significantly) simplifies the problem of estimating f .
I Con: the model chosen is probably not the true form of f .

I We can improve our model by making it more flexible. . .
I . . . but more flexible models run the risk of overfitting (fitting the noise too closely).

We will learn about specific parametric models in the next couple chapters.



Estimating f : Nonparametric Methods

Nonparametric methods make no explicit assumptions about the functional form of f .

I Goal: estimate f so that it gets close to the data points without being too “wiggly”
(without overfitting).

I Pro: can fit a much wider range of possible shapes for f .
I Con: often require a large number of observations to obtain accurate estimates.

We will learn more about nonparamteric methods in later chapters.



Accuracy versus Interpretability

If we have enough data, why would we ever use a less flexible parametric approach?

I Restrictive models tend to be much more interpretable (wrt inference).
I More complex methods may make it very difficult to understand the relationship

between a predictor and the response.

If we’re only interested in prediction, we may not have a strong reason to use a
restrictive model.

I However, very flexible models can have a tendency to overfit the data, so we
shouldn’t always go straight to the most flexible approach possible!



Supervised versus Unsupervised Learning

I In supervised learning problems, we use a set of predictor variables X to predict
some response variable Y using Y = f (X ) + ε.

I In unsupervised learning problems, we have a set of variable X , but we don’t have a
response variable.
I Want to understand the relationships between the variables/observations.
I Often we use some kind of clustering algorithm to group the observations.



A Simple Example of Unsupervised Learning
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Regression versus Classification

Broadly,

I Regression models refer to models with a quantitative (numeric) response Y.
I Classification models refer to models with a qualitative (categorical) response Y .

There is some nuance here, but we will worry about that on a case-by-case basis.


