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Simple Linear Regression

Model:
Y ≈ β0 + β1X

where X consists of a single predictor variable.

▶ The intercept, β0, and the slope, β1, make up the models parameters or coefficients.

When we use the estimated model to make predictions, we write

ŷ = β̂0 + β̂1x

▶ Conceptually, this is a 2D extension of using a sample mean x̄ to estimate a
population mean µ.



Estimating the Coefficients

▶ We can think of our data as n points of the form (xi , yi).
▶ Our goal is to estimate β0 and β1 so that the model fits the data well.

▶ That is, so that
yi ≈ β̂0 + β̂1xi

for each i ∈ {1, . . . , n}.
▶ Idea: the line is as close as possible to all n data points.



Least Squares

The least squares criterion focuses on “closeness” as a measure of how close each
response value y is to the predicted value ŷ :

ei = yi − ŷi

where ei is the ith residual.

Then the residual sum of squares is

RSS = e2
1 + e2

2 + · · · + e2
n



Least Squares
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Least Squares

The least squares approach chooses β̂0 and β̂1 to minimize the RSS.

RSS = e2
1 + e2

2 + · · · + e2
n

= (y1 − ŷ1)2 + (y2 − ŷ2)2 + · · · + (yn − ŷn)2

= (y1 − β̂0 − β̂1x1)2 + (y2 − β̂0 − β̂1x2)2 + · · · + (yn − β̂0 − β̂1x1)2

which we minimize by taking the derivatives

δRSS
δβ̂0

and δRSS
δβ̂1



Least Squares

This minimization problem yields

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

and

β̂0 = ȳ − β̂1x̄



Here, β̂0 = 7.03 and β̂1 = 0.0475.
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Assessing Accuracy of Coefficient Estimates

When we assume f is linear, we say

Y = f (X ) + ϵ = β0 + β1X + ϵ

▶ where β0 is the intercept term.
▶ This is the expected value of Y when X = 0.

▶ and β1 is the slope.
▶ This is the average increase in Y for a one-unit increase in X .



Assessing Accuracy of Coefficient Estimates

The model
Y = β0 + β1X + ϵ

defines the (unknown) population regression line, the best linear approximation to the
true relationship between X and Y .

The estimated line
ŷ = β̂0 + β̂1x

is the least squares regression line.



f.x <- function(x){2*x + 7 + rnorm(length(x),0,10)}
x <- runif(100, -5, 5)
y <- f.x(x)
plot(x,y)
abline(7, 2, col='black', lwd=2)
abline(lm(y~x), col='blue', lwd=2)
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Example: Generating Many Samples
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Example: Generating Many Samples

rand.lines <- function(){
x <- runif(100, -5, 5)
y <- 2*x + 7 + rnorm(length(x),0,10)
lm(y ~ x)$coefficients

}
coefs <- replicate(25, rand.lines())

colfunc <- colorRampPalette(c("red","yellow","springgreen","royalblue"))
colrs <- colfunc(25)

plot(-5:5, 2*(-5:5)+7, type='l', lwd=2, xlab='x', ylab='y')
for(i in 1:25) abline(coefs[,i], col=colrs[i])



Assessing Accuracy of Coefficient Estimates

Least squares estimates are unbiased. Idea:

▶ Take a large number of samples and calculate β̂0 and β̂1 for each.
▶ If we were to find the mean of all the estimates of β̂0, it would be β0.
▶ . . . and if we were to find the mean of all the estimates of β̂1, it would be β1.
▶ We can see this visualized in the previous plot.



Assessing Accuracy of Coefficient Estimates

As in using x̄ to estimate µ, a regression line from a single sample may or may not be a
good estimate.

▶ How variable is it?
▶ When we use x̄ to estimate µ, the variability is

Var(x̄) = SE(x̄)2 = σ2

n
▶ SE tells us roughly how far a typical estimate differs from µ.



Assessing Accuracy of Coefficient Estimates

So what about the regression line?

For β̂0,

SE(β̂0)2 = σ2
[

1
n + x̄2∑n

i=1(xi − x̄)2

]

and for β̂1,

SE(β̂1)2 = σ2∑n
i=1(xi − x̄)2

where σ2 = Var(ϵ).

▶ Assumption: the errors ϵi are uncorrelated and have common variance.



Estimating σ

In general, σ is unknown, but can be estimated from the data:

σ̂ = RSE =
√

RSS
(n − 2)

▶ This is also called the residual standard error.



Confidence Intervals for β0 and β1

A general confidence interval looks like

point estimate ± (critical value) × (standard error)

For βi ,
β̂i ± tdf ,α/2 × SE(β̂i)

▶ We use the t-distribution under the assumption that the errors are approximately
Gaussian (normal).



Hypothesis Tests for β0 and β1

The most common hypothesis test in this setting involves

▶ (Null hypothesis) H0: There is no relationship between X and Y .
▶ (Alternative hypothesis) HA: There is some relationship between X and Y .



Hypothesis Tests for β0 and β1

Mathematically, this is just

H0 : β1 = 0

versus
HA : β1 ̸= 0

Because, if β1 = 0, then the model is just Y = β0 + ϵ, which does not depend on X .

▶ Note: in the model Y = β0 + ϵ, we find β̂0 = ȳ .



Hypothesis Tests for β0 and β1

Two ways to test these hypotheses:

1. Use the confidence interval approach (check if 0 is in the interval for β̂1).
2. Compute a test statistic

t = β̂1 − 0
SE(β̂1)

which measures how many standard deviations β̂1 is from 0.
▶ From here, we typically calculate the p-value, or the probability of observing a value as

extreme as β̂1 if in fact β1 = 0.



Hypothesis Tests for β0 and β1
In practice, we never do this by hand.
mod1 <- lm(Loblolly$age ~ Loblolly$height)
summary(mod1)

##
## Call:
## lm(formula = Loblolly$age ~ Loblolly$height)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5528 -0.7378 0.1421 0.6925 2.8966
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.757380 0.229203 3.304 0.00141 **
## Loblolly$height 0.378274 0.005979 63.272 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.126 on 82 degrees of freedom
## Multiple R-squared: 0.9799, Adjusted R-squared: 0.9797
## F-statistic: 4003 on 1 and 82 DF, p-value: < 2.2e-16



Assessing Model Accuracy

Having concluded that β1 is nonzero, we want to examine the extent to which the
model fits the data.

Linear regression model quality assessed using two measures:

1. Residual standard error
2. R2



Residual standard error

Recall: RSE = σ̂.

▶ This is a measure of how far - on average - linear regression line estimates deviate
from the truth.
▶ A “good” RSE will depend on problem context (e.g., units).

▶ RSE is considered a lack of fit measure.
▶ If predictions are very close to true outcomes, RSE will be small (and vice versa).



R2 Statistic

RSE is measured in units of Y , so it may be unclear what a “good” RSE is.

The R2 statistic

▶ is the proportion of variance explained by the model.
▶ always takes values between 0 and 1.

R2 = TSS − RSS
TSS = 1 − RSS

TSS

where TSS =
∑

(yi − ȳ)2



Sum of Squares

▶ TSS is the total sum of squares, the total variance in Y .
▶ RSS is the residual sum of squares, the variability leftover after the regression is

performed.
▶ Another measure, ESS, is the explained sum of squares and is the variability in Y

that is explained by the regression model:

TSS = RSS + ESS

Thus, R2 = ESS
TSS is the proportion of variability in Y that can be explained by the linear

regression model.



R2 Statistic

“Good” R2 values are those closer to 1.

. . . How close to 1?

It depends!



Correlation

We can also measure the (linear) correlation between two variables.

Cor(X , Y ) = R =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

In the linear regression context, the square of the correlation is the R2 we just saw.


