3.1 Simple Linear Regression

Prof. Lauren Perry



Simple Linear Regression

Model:
Y =~ o+ 81X

where X consists of a single predictor variable.
» The intercept, By, and the slope, B1, make up the models parameters or coefficients.

When we use the estimated model to make predictions, we write
¥ = Bo+ Pix

» Conceptually, this is a 2D extension of using a sample mean X to estimate a
population mean p.



Estimating the Coefficients

» We can think of our data as n points of the form (x;, y;).
» Qur goal is to estimate [y and (1 so that the model fits the data well.
» That is, so that . )
i = Bo + bixi
foreach i € {1,...,n}.
» Idea: the line is as close as possible to all n data points.



Least Squares

The least squares criterion focuses on “closeness” as a measure of how close each
response value y is to the predicted value y:

e =yi—Yi
where ¢; is the ith residual.

Then the residual sum of squares is

RSS=el+ e +---+ e



Least Squares
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Least Squares

The least squares approach chooses Bo and 31 to minimize the RSS.

RSS = e + €3 +--- + e
= =)+ (=) ++ (Yn— In)?
= (y1 — Bo — Prx1)® + (y2 — fo — Brxa)? + -+ (yn — fo — Brx1)?

which we minimize by taking the derivatives

O0RSS ORSS
and =

580 dp1




Least Squares

This minimization problem yields

s 2im(i = X) (i — )

S >

and



Here, By = 7.03 and (3; = 0.0475.
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Assessing Accuracy of Coefficient Estimates

When we assume f is linear, we say

Y =f(X)+e=PFo+BX—+e

» where (p is the intercept term.
» This is the expected value of Y when X = 0.
» and (3 is the slope.
» This is the average increase in Y for a one-unit increase in X.



Assessing Accuracy of Coefficient Estimates

The model
Y =0+ /X+e

defines the (unknown) population regression line, the best linear approximation to the
true relationship between X and Y.

The estimated line
¥ = Bo + Bix

is the least squares regression line.



f.x <~ function(x){2*x + 7 + rnorm(length(x),0,10)}
x <- runif (100, -5, 5)

y <- f.x(x)

plot(x,y)

abline(7, 2, col='black',6 1lwd=2)

abline(Im(y~x), col='blue', lwd=2)
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Example: Generating Many Samples

10




Example: Generating Many Samples

rand.lines <- function(){
x <- runif (100, -5, 5)
y <= 2xx + 7 + rnorm(length(x),0,10)
Im(y ~ x)$coefficients

by

coefs <- replicate(25, rand.lines())

colfunc <- colorRampPalette(c("red","yellow","springgreen","royalblue"))
colrs <- colfunc(25)

plot(-5:5, 2%(-5:5)+7, type='1l', 1lwd=2, xlab='x', ylab='y')
for(i in 1:25) abline(coefs[,i], col=colrs[i])



Assessing Accuracy of Coefficient Estimates

Least squares estimates are unbiased. ldea:

» Take a large number of samples and calculate BO and BAl for each.

> If we were to find the mean of all the estimates of ﬁAo, it would be fy.

> ...and if we were to find the mean of all the estimates of ,@’1, it would be ;.
P> We can see this visualized in the previous plot.



Assessing Accuracy of Coefficient Estimates

As in using X to estimate u, a regression line from a single sample may or may not be a
good estimate.

» How variable is it?
» When we use X to estimate p, the variability is

o2

Var(x) = SE(%)? = -

» SE tells us roughly how far a typical estimate differs from .



Assessing Accuracy of Coefficient Estimates

So what about the regression line?

For Bo,
Ao o)l X2
SE(/BO) =0 |]7 + —27:1(Xi _ )_()2‘|
and for Bl, ,
SE(3)? = v
)= S —wp

where 02 = Var(e).

» Assumption: the errors ¢; are uncorrelated and have common variance.



Estimating o

In general, o is unknown, but can be estimated from the data:

RSS

6 = RSE = (n—2)

» This is also called the residual standard error.



Confidence Intervals for 5y and (34

A general confidence interval looks like

point estimate =+ (critical value) x (standard error)

For 3;, i i
Bi % tar a2 < SE(5)

> We use the t-distribution under the assumption that the errors are approximately
Gaussian (normal).



Hypothesis Tests for 5y and [3;

The most common hypothesis test in this setting involves

» (Null hypothesis) Hy: There is no relationship between X and Y.
» (Alternative hypothesis) Ha: There is some relationship between X and Y.



Hypothesis Tests for 5y and [3;

Mathematically, this is just

Ho:B81=0
versus
Ha:B1#0
Because, if 81 = 0, then the model is just Y = By + ¢, which does not depend on X.

> Note: in the model Y = 3y + ¢, we find Sy = .



Hypothesis Tests for 3y and (3;

Two ways to test these hypotheses:

1. Use the confidence interval approach (check if 0 is in the interval for Bl)
2. Compute a test statistic
p o P10
SE(f1)
which measures how many standard deviations fy is from 0.

» From here, we typically calculate the p-value, or the probability of observing a value as
extreme as f3; if in fact 51 = 0.




Hypothesis Tests for 3y and (3;

In practice, we never do this by hand.

modl <- 1m(Loblolly$age ~ Loblolly$height)
summary (mod1)

#i#

## Call:

## 1m(formula = Loblolly$age ~ Loblolly$height)
##

## Residuals:

## Min 1Q Median 3Q Max

## -2.5528 -0.7378 0.1421 0.6925 2.8966

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 0.757380 0.229203 3.304 0.00141 x*x

## Loblolly$height 0.378274 0.005979 63.272 < 2e-16 *xx
B



Assessing Model Accuracy

Having concluded that 1 is nonzero, we want to examine the extent to which the
model fits the data.

Linear regression model quality assessed using two measures:

1. Residual standard error
2. R?



Residual standard error

Recall: RSE = 6.

» This is a measure of how far - on average - linear regression line estimates deviate
from the truth.
> A “good” RSE will depend on problem context (e.g., units).
» RSE is considered a lack of fit measure.
> If predictions are very close to true outcomes, RSE will be small (and vice versa).



R? Statistic

RSE is measured in units of Y, so it may be unclear what a “good” RSE is.
The R? statistic
> is the proportion of variance explained by the model.

P always takes values between 0 and 1.

p2_ TSS—RSS __ RSS
BREEERES

where TSS = S (y; — 7)?



Sum of Squares

» TSS is the total sum of squares, the total variance in Y.

» RSS is the residual sum of squares, the variability leftover after the regression is
performed.

» Another measure, ESS, is the explained sum of squares and is the variability in Y
that is explained by the regression model:

TSS = RSS + ESS

Thus, R? = % is the proportion of variability in Y that can be explained by the linear
regression model.



R? Statistic

“Good” R? values are those closer to 1.
... How close to 17

It depends!



Correlation

We can also measure the (linear) correlation between two variables.

2ici(xi = X)(yi —¥)

\/Z: 1(xi = X) \/Z?:l(}’/__

In the linear regression context, the square of the correlation is the R? we just saw.

Cor(X,Y)



