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Qualitative Predictors

So far, we’ve focused on only quantitative predictors.

Often, datasets have one or more qualitative predictors.

We need to consider how to fit these into a numeric model fitting context.



Qualitative Predictors with Two Levels

Consider the variable Own from the Credit data.
credit <- read.csv("~/Courses/STAT 196M/datasets/Credit.csv")
own <- as.factor(credit$Own)
summary(own)

## No Yes
## 193 207

To put this into a regression model, we use a dummy variable:

xi = I(the ith person owns a house)



Qualitative Predictors with Two Levels

This results in the model
yi = β0 + β1xi + ϵi

which takes values

▶ β0 + β1 + ϵi if the ith person owns a house.

and

▶ β0 + ϵi if the ith person does not own a house.

So β1 is the average difference in credit card balance between owners and non-owners.



Qualitative Predictors with Two Levels

summary(lm(Limit ~ Own, data = credit))

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 4713.17 166.35 28.333 <2e-16 ***

OwnYes 43.35 231.24 0.187 0.851

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2311 on 398 degrees of freedom

Multiple R-squared: 8.83e-05, Adjusted R-squared: -0.002424

F-statistic: 0.03515 on 1 and 398 DF, p-value: 0.8514



Qualitative Predictors with More than Two Levels

Consider the variable region from the Credit data.

## East South West
## 99 199 102

We can represent this by constructing two dummy variables.

xi ,1 = I(ith person is from the South)

xi ,2 = I(ith person is from the West)



Qualitative Predictors with More than Two Levels

Using region to predict credit,

yi = β0 + β1xi ,1 + β2xi ,2 + ϵi

Why only two dummy variables? Consider:

▶ If the ith person is from the South, yi = β0 + β1xi ,1 + ϵi .
▶ If the ith person is from the West, yi = β0 + β2xi ,2 + ϵi
▶ If the ith person is from the East, yi = β0 + ϵi

So each factor is represented in the model.

▶ Because East has no dummy variable, it is known as the baseline.



Qualitative Predictors with More than Two Levels
summary(lm(Limit ~ Region, data = credit))

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 4881.6 232.4 21.009 <2e-16 ***

RegionSouth -153.1 284.3 -0.539 0.590

RegionWest -273.8 326.2 -0.839 0.402

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2312 on 397 degrees of freedom

Multiple R-squared: 0.001781, Adjusted R-squared: -0.003248

F-statistic: 0.3541 on 2 and 397 DF, p-value: 0.702



Qualitative Predictors
We can also use this approach for a mix of qualitative and quantitative variables in a
model.
mod2 <- lm(Limit ~ Income + Rating + Own + Region, data=credit)
summary(mod2)

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) -539.62205 30.68155 -17.588 <2e-16 ***

Income 0.55281 0.42508 1.300 0.194

Rating 14.77373 0.09685 152.545 <2e-16 ***

OwnYes 2.78064 18.30426 0.152 0.879

RegionSouth 0.71509 22.49522 0.032 0.975

RegionWest 18.21038 25.82151 0.705 0.481



Accounting for Interactions

Sometimes, two predictor variables interact in their impact on the outcome.

Example:

▶ Suppose spending money on TV advertising increases the effectiveness of radio
advertising.

▶ We want a way to let βradio vary based on values of TV. . .



Accounting for Interactions

Consider

Y = β0 + β1X1 + β2X2 + β3X1X2 + ϵ

How does this let βradio vary based on values of X2 = TV?

Y = β0 + (β1 + β3X2)X1 + β2X2 + ϵ

= β0 + β̃1X1 + β2X2 + ϵ

We can interpret β3 as the increase in effectiveness of TV advertising associated with a
one-unit increase in radio advertising (or vice versa).

Consider: Why does estimating the coefficients not require any changes to our least
squares approach?



Advertising <- read.csv("~/Courses/STAT 196M/datasets/Advertising.csv")
mod3 <- lm(sales ~ TV + radio + TV*radio, data=Advertising)
summary(mod3)

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.750e+00 2.479e-01 27.233 <2e-16 ***

TV 1.910e-02 1.504e-03 12.699 <2e-16 ***

radio 2.886e-02 8.905e-03 3.241 0.0014 **

TV:radio 1.086e-03 5.242e-05 20.727 <2e-16 ***

---

Residual standard error: 0.9435 on 196 degrees of freedom

Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673

F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16



Consider R2
adj for the main effects model:

Advertising <- read.csv("~/Courses/STAT 196M/datasets/Advertising.csv")
mod4 <- lm(sales ~ TV + radio, data=Advertising)
summary(mod4)

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.92110 0.29449 9.919 <2e-16 ***

TV 0.04575 0.00139 32.909 <2e-16 ***

radio 0.18799 0.00804 23.382 <2e-16 ***

---

Residual standard error: 1.681 on 197 degrees of freedom

Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962

F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16



Hierarchical Principal

In general, if we include an interaction term in a model, we also include the main effects
even if the p-values associated with the main effects are not significant.



Consider Credit Balance predicted by Income and Student status.

0 50 100 150

2
0
0

6
0
0

1
0
0
0

1
4
0
0

Income

B
a
la

n
c
e

0 50 100 150

2
0
0

6
0
0

1
0
0
0

1
4
0
0

Income

B
a
la

n
c
e

student

non−student

▶ The interaction allows the model for students to have a different slope than the
model for non-students, while the main effects model only allows for different
intercepts.
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Nonlinear Relationships Between Predictors and Outcome

How can we deal with this using linear regression?

▶ The model fit requires the model to be linear with respect to β.
▶ This is much like including X1X2 in the model by creating a “new variable” in the

matrix X .
▶ Here, we just construct a “new variable”, say, X 2

1 in X.



Nonlinear Relationships Between Predictors and Outcome

mod5 <- lm(mpg ~ poly(horsepower, 2), data = Auto)
summary(mod5)

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.4459 0.2209 106.13 <2e-16 ***

poly(horsepower, 2)1 -120.1377 4.3739 -27.47 <2e-16 ***

poly(horsepower, 2)2 44.0895 4.3739 10.08 <2e-16 ***

Residual standard error: 4.374 on 389 degrees of freedom

Multiple R-squared: 0.6876, Adjusted R-squared: 0.686

F-statistic: 428 on 2 and 389 DF, p-value: < 2.2e-16
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Potential Problems

1. Non-linearity of the response-predictor relationships.
2. Correlation of error terms.
3. Non-constant variance of error terms.
4. Outliers and high-leverage points.
5. Collinearity.



1. Non-linearity of the response-predictor relationships.

▶ We can examine non-linearity using residual plots.
▶ Ideally, these will show no discernible pattern (random scatter).
▶ We can work on fixing this problem by transforming the predictors:

▶ Ex: log X ,
√

(X ), X 2, etc.



Example Residual Plots Showing Non-Linearity
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2. Correlation of Error Terms

Assumption: error terms ϵ1, ϵ2, . . . , ϵn are uncorrelated.

▶ That is, knowing something about ϵi , doesn’t tell us anything about ϵi+1.
▶ Our standard error calculations rely on this.

▶ Violations tend to result in std error being underestimated.
▶ This causes erroneously narrow confidence/prediction intervals.

▶ These correlations can occur for data that is time dependent.
▶ We should use different modeling techniques for this type of data.



3. Non-constant variance of error terms.

Assumption: error terms have constant variance, Var(ϵi) = σ2.

▶ We can check for homoscedasticity using residual plots.
▶ There should be no discernible pattern in the variability.
▶ Standard errors rely on this assumption.
▶ This assumption is often violated, but we can usually fix (or at least improve) it!
▶ We work on fixing this problem by transforming the outcome variable:

▶ Ex: log Y ,
√

(Y ), Y 2, etc.



Example Residual Plot - Before and After log(Y) Transformation
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4. Outliers and High-Leverage Points

An outlier is a point for which yi is far from the value predicted by the model.

▶ If we think the outlier resulted from an error in data collection, we can remove it.
▶ . . . but there is nothing inherently wrong with outliers.

From a model fittng perspective, we are much more interested in high-leverage points.

▶ These are observations which have a significant individual impact on the regression
line.
▶ We can examine this by removing a point from the data and refitting the model, and

then examining how much the regression line changed.
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6. Collinearity
Collinearity is the situation in which one or more predictor variables are closely related to
one another.
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Collinearity

When two variables are collinear:

▶ It can be difficult to separate out their individual effects on the response.
▶ The accuracy of regression coefficient estimates is decreased.
▶ Standard error is increased, which shrinks the test statistics (toward 0).

▶ This results in larger p-values and potentially a failure to reject H0.



Dealing with Collinearity

▶ Examine the correlation matrix for the predictors.

. mpg cyl disp hp wt acc yr orgn

mpg 1.00 -0.78 -0.81 -0.78 -0.83 0.42 0.58 0.57

cyl -0.78 1.00 0.95 0.84 0.90 -0.50 -0.35 -0.57

disp -0.81 0.95 1.00 0.90 0.93 -0.54 -0.37 -0.61

hp -0.78 0.84 0.90 1.00 0.86 -0.69 -0.42 -0.46

wt -0.83 0.90 0.93 0.86 1.00 -0.42 -0.31 -0.59

acc 0.42 -0.50 -0.54 -0.69 -0.42 1.00 0.29 0.21

yr 0.58 -0.35 -0.37 -0.42 -0.31 0.29 1.00 0.18

orgn 0.57 -0.57 -0.61 -0.46 -0.59 0.21 0.18 1.00



Multicollinearity

Sometimes, we can run into collinearity between three or more variables that will not
appear in the two-way correlations shown in the correlation matrix.

▶ To examine possible multicollinearity, we compute the variance inflation factor
(VIF).
▶ This is the ratio of (variance of β̂j when fitting the full model) to (the variance of β̂j if

fit on its own).
▶ The minimum value for VIF is 1.
▶ There are different ideas for what constitutes a “high” VIF, but people often use 5 or

10.



Multicollinearity

cylinders displacement horsepower

10.737535 21.836792 9.943693

weight acceleration year origin

10.831260 2.625806 1.244952 1.772386

▶ Now what?



Multicollinearity

Let’s try removing the variable with the highest VIF:

cylinders horsepower weight

6.008253 9.088413 9.219674

acceleration year origin

2.598356 1.239409 1.594220

▶ Notice that removing displacement also slightly improved the VIF for all the
other variables!

▶ At this point, we can stop (if we’re using 10) or try removing another variable.



Multicollinearity

Let’s try removing one more variable (displacement):

## cylinders horsepower acceleration year origin
## 4.155143 5.323311 1.996560 1.209909 1.495100

▶ That made a big difference!



The Final Model
Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.87876 5.05154 -1.560 0.12

cylinders -1.22202 0.22524 -5.425 1.02e-07 ***

horsepower -0.08815 0.01130 -7.802 5.75e-14 ***

acceleration -0.40305 0.09654 -4.175 3.69e-05 ***

year 0.66601 0.05628 11.833 < 2e-16 ***

origin 1.82772 0.28612 6.388 4.84e-10 ***

---

Residual standard error: 3.727 on 386 degrees of freedom

Multiple R-squared: 0.7749, Adjusted R-squared: 0.772

F-statistic: 265.7 on 5 and 386 DF, p-value: < 2.2e-16


