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Logistic Regression

Logistic regression will allow us to examine the case where the outcome variable has two
distinct categories.

I The outcome Y will be constructed as a dummy variable.
I Rather than modeling the response directly, logistic regression models the

probability of falling into a particular category.
I Then we might use, say, Ŷ = 0.5 as the cutoff point for predicting one category or

the other.



The Logistic Model

How do we model the relationship between this probability and the outcome X?

p(X ) = β0 + β1X

I We want to avoid the potential to predict probabilities outside of [0, 1].
I In logistic regression, we use the logistic function

p(X ) = exp(β0 + β1X )
1 + exp(β0 + β1X )



Odds

I We can rewrite that last eqn to find

p(X )
1− p(X ) = exp(β0 + β1X )

I The quantity p(X )/[1− p(X )] is called the odds
I Odds can take on any values on [0, inf).
I Ex: With an odds of 1/4, on avg 1 in 5 people will default.

I p(X ) = 0.2→ 0.2/(1− 0.2) = 1/4
I Ex: With an odds of 9, on average 9 in 10 people will default.

I p(X ) = 0.9→ 0.9/(1− 0.9) = 9



The Logistic Model

p(X ) = exp(β0 + β1X )
1 + exp(β0 + β1X )

can be written as

p(X )
1− p(X ) = exp(β0 + β1X )

and finally as

log
( p(X )
1− p(X )

)
= β0 + β1X

where the LHS is called the log odds or logit function.



The Logistic Model

log
( p(X )
1− p(X )

)
= β0 + β1X

I When we run a logistic regression, predicted values are log odds.
I This makes interpretation a little more involved!
I If we increase X by one unit, the log odds change by β1.

I Or we can say it multiplies the odds by eβ1 .



Estimating the Coefficients

log
( p(X )
1− p(X )

)
= β0 + β1X

Here, we use a method called maximum likelihood to estimate the coefficients.

Idea: want to find estimates for β0 and β1 and such that the predicted probability p̂(xi)
for each observation corresponds as closely as possible to the individual’s observed
default status.

We are not going to discuss the mathematical details of MLE, but will note that least
squares is a special case of it.



Example: Logistic Regression in R

glm(default ~ balance + income, family=binomial, data=Default)

##
## Call: glm(formula = default ~ balance + income, family = binomial,
## data = Default)
##
## Coefficients:
## (Intercept) balance income
## -1.154e+01 5.647e-03 2.081e-05
##
## Degrees of Freedom: 9999 Total (i.e. Null); 9997 Residual
## Null Deviance: 2921
## Residual Deviance: 1579 AIC: 1585



##
## Call:
## glm(formula = default ~ balance + income, family = binomial,
## data = Default)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8



Making Predictions

p̂(X ) = exp(β̂0 + β̂1X )
1 + exp(β̂0 + β̂1X )

and we plug in values for X .

I We can also plug in values for X into the odds or log odds formulations to predict
those values.



Multiple Logistic Regression

This extension is very similar to the one from simple to multiple linear regression.

log
( p(X )
1− p(X )

)
= β0 + β1X1 + β2X2 + · · ·+ βkXk

and

p̂(X ) = exp(β̂0 + β̂1X1 + β2X2 + · · ·+ βkXk)
1 + exp(β̂0 + β̂1X1 + β2X2 + · · ·+ βkXk)



Example
##
## Call:
## glm(formula = default ~ ., family = binomial, data = Default)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
## studentYes -6.468e-01 2.363e-01 -2.738 0.00619 **
## balance 5.737e-03 2.319e-04 24.738 < 2e-16 ***
## income 3.033e-06 8.203e-06 0.370 0.71152
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1571.5 on 9996 degrees of freedom
## AIC: 1579.5
##
## Number of Fisher Scoring iterations: 8



Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***

studentYes -6.468e-01 2.363e-01 -2.738 0.00619 **

balance 5.737e-03 2.319e-04 24.738 < 2e-16 ***

income 3.033e-06 8.203e-06 0.370 0.71152

I Negative coefficient suggests students less likely to default than non students.
I However, a model with only student has a positive coefficient. Why?
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I Overall average default rates are higher for students.
I As a function of credit card balance, default rates are lower for students.

I So students are riskier than non-students on average, but a student is less risky than a
non-student with the same credit card balance.



Multinomial Logistic Regression

What if the response variable has more than two outcomes, K > 2?

Select one class to serve as the baseline. WLOG, we choose class K . Then the model
becomes

P(Y = k|X = x) = exp(βk0 + βk1x1 + βk2x2 + · · ·+ βkpxp)
1 +

∑K−1
l=1 exp(βl0 + βl1x1 + βl2x2 + · · ·+ βlpxp)

for p predictor variables and k = 1, . . . ,K − 1 and

P(Y = K |X = x) = 1
1 +

∑K−1
l=1 exp(βl0 + βl1x1 + βl2x2 + · · ·+ βlpxp)

.



Multinomial Logistic Regression

Then for k = 1, . . . ,K − 1,

log
( P(Y = k|X = x)
P(Y = K |X = x)

)
= βk0 + βk1x1 + βk2x2 + · · ·+ βkpxp

I Baseline is unimportant from a modeling perspective, but it does serve as the point
of comparison for other classes.

I Say seizure is our baseline for some medical classification problem and let k
represent stroke.
I Then the model gives the log odds of stroke versus seizure.



Softmax Coding

Another way to do the estimation for a multinomal logistic regression is, for
k = 1, 2, . . . ,K

P(Y = k|X = x) = exp(βk0 + βk1x1 + βk2x2 + · · ·+ βkpxp)∑K
l=1 exp(βl0 + βl1x1 + βl2x2 + · · ·+ βlpxp)

which requires the estimation of coefficients for all K classes, instead of K − 1 classes.

Then the log odds ratio between any two classes k and k ′ is

log
( P(Y = k|X = x)
P(Y = k ′|X = x)

)
= (βk0−βk′0)+(βk1−βk′1)x1+(βk2−βk′2)x2+· · ·+(βkp−βk′p)xp



Multinomial Logistic Regression in R

library(nnet)
data(penguins, package = "palmerpenguins")
penguins$species <- relevel(penguins$species, ref="Adelie")
mod2 <- multinom(species ~ . -island -year, data = penguins)
summary(mod2)



Coefficients:

. (Intercept) bill_length_mm bill_depth_mm flipper_length_mm
body_mass_g sexmale

Chinstrap -103.422229 16.51642 -24.41758 -0.31003929
-0.030200928 -15.820607

Gentoo -6.756321 12.21924 -30.09757 -0.08758995
0.005019683 -8.132101

Std. Errors:

. (Intercept) bill_length_mm bill_depth_mm flipper_length_mm
body_mass_g sexmale

Chinstrap 0.5715154 27.74977 27.43640 4.097365
0.1350169 3.077520

Gentoo 0.5715734 8.96879 33.25608 11.905692
0.5848602 3.498288


