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The Need for Alternatives

Why not just use logistic regression?

I If there is a lot of separation between the classes, logistic regression models are
surprisingly unstable.
I (Coefficient estimates can vary significantly given the same data generating process.)

I If the distribution of the predictors X is approx. normal and the sample size is
small, these alternatives may be more accurate than logistic regression.

I The methods in this section have more natural extensions to three or more classes.



Idea

I Model the distribution of the predictors X separately for each response class.
I Use Bayes’ theorem to work these into estimates for P(Y = k|X = x).



The Setup
Suppose Y can take on K distinct, unordered values.

I Let πk represent the overall probability that a randomly chosen observation comes
from the kth class.
I Generally estimated as the proportion of training observations belonging to class k.

I Let fk(x) = P(X |Y = k) denote the density function of X for an observation from
the kth class.
I So fk(x) should be relatively large if there is a high probability that an observation

from the kth class has X ≈ x .
I Then Bayes’ Theorem states

pk(x) = P(Y = k|X = x) = πk fk(x)∑K
l=i πl fl(x)

I This is the posterior probability that an observation belongs to the kth class, given
X = x .

Goal: estimate fk(x) to approximate the Bayes’ classifier pk(x).



Linear Discriminant Analysis for One Predictor, p = 1

We will classify an observation into the category for which pk(x) = P(Y = k|X = x) is
greatest.

I Assume fk(x) is normally distributed (Gaussian):

f (x) = 1√
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k
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[
−(x − µk)2
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where µk and σ2
k are the mean and standard deviation parameters for the kth class.

I Also assume σ2
1 = σ2

2 = · · · = σ2
K = σ2 (shared variance term for all classes).



Linear Discriminant Analysis for One Predictor, p = 1

Combining the Bayes’ Theorem set up with these assumptions, we get

pk(x) =
πk√
2πσ2 exp

[
− 1
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]

∑K
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which looks a mess, but it can be shown this is equivalent to assigning the observation
to the class for which

δk(x) = x
(
µk
σ2

)
− µ2

k
2σ2 + log(πk)

is largest.



Linear Discriminant Analysis for One Predictor, p = 1

δk(x) = x
(
µk
σ2

)
− µ2

k
2σ2 + log(πk)

If K = 2 and π1 = π2, this classifier assigns an observation to

I class 1 if 2x(µ1 − µ2) > µ1 − µ2.
I class 2 otherwise.

The Bayes’ decision boundary is the point for which δ1 = δ2, which in this setting is

x = µ2
1 − µ2

2
2(µ1 − µ2) = µ1 + µ2

2



Example

I Consider predictors generated from two normal distributions where mu1 = −1.25,
µ2 = 1.25, and σ1 = σ2 = 1.

I Assume an observation is equally likely to come from either class, i.e.,
π1 = π2 = 0.5.

I Then the (known) Bayes’ classifier assigns an observation to class 1 if x < 0 and
class 2 otherwise.
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I 20 observations drawn from each class.
I LDA decision boundary shown as solid vertical line.



Linear Discriminant Analysis for One Predictor, p = 1

In practice, we must estimate µ1, . . . , µK , π1, . . . , πK , and σ.

µ̂k = 1
nk

∑
i :yi =k

xi

σ̂2 = 1
n − K

K∑
k=1

∑
i :yi =k

(xi − µ̂k)2

π̂k = nk
n

Where n is the number of training observations and nk is the number of training
observations in the kth class.

I σ̂2 is a weighted average of sample variances across the K classes.



Linear Discriminant Analysis for One Predictor, p = 1

Assign an observation X = x to the class for which

δk(x) = x
(
µ̂k
σ̂2

)
− µ̂2

k
2σ̂2 + log(π̂k)

is largest.



Example: Using Penguin Body Mass to Predict Species

data(penguins, package = "palmerpenguins")
mod1 <- lda(species ~ body_mass_g, penguins)
predval <- predict(mod1)$class
species <- penguins$species[!is.na(penguins$species) & !is.na(penguins$body_mass_g)]
table(predval, species)

## species
## predval Adelie Chinstrap Gentoo
## Adelie 140 64 14
## Chinstrap 0 0 0
## Gentoo 11 4 109

mean(predval == species)

## [1] 0.7280702


