Dr. Lauren Perry

Why not just use logistic regression?

If there is a lot of separation between the classes, logistic regression models are surprisingly unstable.

(Coefficient estimates can vary significantly given the same data generating process.)

- If the distribution of the predictors X is approx. normal and the sample size is small, these alternatives may be more accurate than logistic regression.
- ▶ The methods in this section have more natural extensions to three or more classes.

Model the distribution of the predictors X separately for each response class.
Use Bayes' theorem to work these into estimates for P(Y = k|X = x).

The Setup

Suppose Y can take on K distinct, unordered values.

• Let π_k represent the overall probability that a randomly chosen observation comes from the *k*th class.

• Generally estimated as the proportion of training observations belonging to class k.

► Let f_k(x) = P(X|Y = k) denote the density function of X for an observation from the kth class.

- So f_k(x) should be relatively large if there is a high probability that an observation from the kth class has X ≈ x.
- Then Bayes' Theorem states

$$p_k(x) = \mathsf{P}(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

This is the posterior probability that an observation belongs to the kth class, given X = x.

Goal: estimate $f_k(x)$ to approximate the Bayes' classifier $p_k(x)$.

We will classify an observation into the category for which $p_k(x) = P(Y = k | X = x)$ is greatest.

• Assume $f_k(x)$ is normally distributed (Gaussian):

$$f(x) = rac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left[-rac{(x-\mu_k)^2}{2\sigma_k^2}
ight]$$

where μ_k and σ_k^2 are the mean and standard deviation parameters for the *k*th class. Also assume $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_K^2 = \sigma^2$ (shared variance term for all classes).

Combining the Bayes' Theorem set up with these assumptions, we get

$$p_k(x) = \frac{\frac{\pi_k}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu_k)^2\right]}{\sum_{l=1}^K \frac{\pi_l}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu_l)^2\right]}$$

which looks a mess, but it can be shown this is equivalent to assigning the observation to the class for which

$$\delta_k(x) = x\left(rac{\mu_k}{\sigma^2}
ight) - rac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

is largest.

$$\delta_k(x) = x\left(rac{\mu_k}{\sigma^2}
ight) - rac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

If K = 2 and $\pi_1 = \pi_2$, this classifier assigns an observation to

The Bayes' decision boundary is the point for which $\delta_1 = \delta_2$, which in this setting is

$$x = \frac{\mu_1^2 - \mu_2^2}{2(\mu_1 - \mu_2)} = \frac{\mu_1 + \mu_2}{2}$$

Example

- Consider predictors generated from two normal distributions where $\mu_1 = -1.25$, $\mu_2 = 1.25$, and $\sigma_1 = \sigma_2 = 1$.
- Assume an observation is equally likely to come from either class, i.e., $\pi_1 = \pi_2 = 0.5$.
- Then the (known) Bayes' classifier assigns an observation to class 1 if x < 0 and class 2 otherwise.</p>

Example

- ▶ 20 observations drawn from each class.
- ► LDA decision boundary shown as solid vertical line.

In practice, we must estimate μ_1, \ldots, μ_K , π_1, \ldots, π_K , and σ .

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i=k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n-K} \sum_{k=1}^K \sum_{i:y_i=k} (x_i - \hat{\mu}_k)^2$$

$$\hat{\pi}_k = \frac{n_k}{n}$$

Where *n* is the number of training observations and n_k is the number of training observations in the *k*th class.

• $\hat{\sigma}^2$ is a weighted average of sample variances across the K classes.

Assign an observation X = x to the class for which

$$\delta_k(x) = x \left(rac{\hat{\mu}_k}{\hat{\sigma}^2}
ight) - rac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

is largest.

Example: Using Penguin Body Mass to Predict Species

```
data(penguins, package = "palmerpenguins")
mod1 <- lda(species ~ body_mass_g, penguins)
predval <- predict(mod1)$class
species <- penguins$species[!is.na(penguins$species) & !is.na(penguins$bod
table(predval, species)</pre>
```

##	ŝ	species		
##	predval	Adelie	Chinstrap	Gentoo
##	Adelie	140	64	14
##	Chinstrap	0	0	0
##	Gentoo	11	4	109
mean (nreduc] created)				

mean(predval == species)

[1] 0.7280702