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Multivariate Normal Distribution

We now assume the predictors X = (X1,X2, . . . ,Xp) are drawn from a multivariate
normal distribution.

X ∼ N(µ,Σ)

I Each individual predictor follows a one-dimensional normal distribution.
I The vector µ contains all p means.

I Each pair of predictors is allowed to be correlated.
I We represent this correlation with a p × p covariance matrix Σ that contains each

variable’s variance and all pairwise covariances.



LDA for p > 1

Assume the observations in the kth class are drawn from a multivariate normal
distribution N(µk ,Σ).

I µk is a class-specific vector of (p) means.
I Σ is the covariance matrix, assumed common to all K classes.

The Bayes classifier assigns an observation X = x to the class for which

δk(x) = xT Σ−1µk −
1
2µ

T
k Σ−1µk + log πk

where πk is again P(Y = k).



Example: Simulated Data with p = 2
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LDA in Practice

We estimate the unknown parameters µ1, . . . , µK , π1, . . . , πK , and Σ similar to how we
estimated those used in the one-dimensional case.

The LDA then assigns an observation X = x to the class for which

δ̂k(x) = xT Σ̂−1µ̂k −
1
2 µ̂

T
k Σ̂−1µ̂k + log π̂k

is largest.



Example: Predicting Penguin Species

data(penguins, package = "palmerpenguins")
mod1 <- lda(species ~ ., penguins)
predval <- predict(mod1)$class
species <- penguins$species[-unique(which(is.na(penguins), arr.ind=T)[,1])]
table(predval, species)

## species
## predval Adelie Chinstrap Gentoo
## Adelie 145 0 0
## Chinstrap 1 68 0
## Gentoo 0 0 119

mean(predval == species)

## [1] 0.996997



Example: Test and Training Data

I The error rate (< 1%) seems very low, but we’re only examining training error rate.
data(penguins, package = "palmerpenguins")
set.seed(1)

# Remove missing data
pens <- penguins[-unique(which(is.na(penguins), arr.ind=T)[,1]),]
# Use 80% of the data as training data
train.ind <- sample(1:nrow(pens), floor(0.8*nrow(pens)), replace=F)
train.pen <- pens[train.ind, ]
# The rest us test data
test.pen <- pens[-train.ind, ]



Example: Test and Training Data

mod2 <- lda(species ~ ., train.pen)
predval <- predict(mod2, test.pen)$class
species <- test.pen$species
table(predval, species)

## species
## predval Adelie Chinstrap Gentoo
## Adelie 31 1 0
## Chinstrap 0 10 0
## Gentoo 0 0 25

mean(predval == species)

## [1] 0.9850746



Example: Default Data

library(ISLR2)
data(Default)
set.seed(1)

train.ind <- sample(1:nrow(Default), floor(0.8*nrow(Default)), replace=F)
def.train <- Default[train.ind,]
def.test <- Default[-train.ind,]

mod3 <- lda(default ~ ., def.train)
predval <- predict(mod3, def.test)$class
actual <- def.test$default
mean(predval==actual)

## [1] 0.9705



Example: Default Data Confusion Matrix

table(predval, actual)

## actual
## predval No Yes
## No 1929 58
## Yes 1 12

I Overall error is low (approx 3%).
I But, only 3/3% of those in the training data defaulted, so a model that predicted

no default would have a very low overall error rate.
I Also, error rate is very high among people who actually defaulted!

I The model correctly identified only 17% (12/70) of the people who defaulted.



Error Rates

Why does this happen? Consider the two-class case.

I Bayes classifier - which LDA approximates - has lowest overall error rate.
I The classifier assigns to the posterior probability which is greatest.
I It will assign to default if P(default = Yes|X = x) > 0.5.

I But if only 3% of people default, this can be a pretty high threshold to reach!
I It is also possible to change these assignments, e.g., assign to default if

P(default = Yes|X = x) > 0.2.
I . . . but this will come with a trade off in accuracy of assigning people to not default.



ROC Curves

Receiver Operating Characteristics curves display the relationship between false positive
rate and true positive rate, which vary with different probability thresholds.

I Classifier performance over all possible thresholds can be summarized by ROC area
under the curve (AUC).

I Ideal ROC curves hug the top left corner.
I The true positive rate is referred to as sensitivity.
I The false positive rate is 1− specificity.

I (I.e., specificity is the true negative rate.)



ROC Curves
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Model Performance and Misclassification


