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Multivariate Normal Distribution

We now assume the predictors X = (X1, X2, . . . , Xp) are drawn from a multivariate
normal distribution.

X ∼ N(µ, Σ)

▶ Each individual predictor follows a one-dimensional normal distribution.
▶ The vector µ contains all p means.

▶ Each pair of predictors is allowed to be correlated.
▶ We represent this correlation with a p × p covariance matrix Σ that contains each

variable’s variance and all pairwise covariances.



QDA vs LDA

▶ Quadratic discriminant analysis is similar to linear discriminant analysis.
▶ We assume predictors from the kth class are of the form

X ∼ N(µk , Σ)

▶ However, QDA allows each class to have its own covariance matrix.
▶ Now, assume predictors from the kth class are of the form

X ∼ N(µk , Σk)



Quadratic Discriminant Analysis

Under this assumption, the Bayes classifier assigns an observation X = x to the class for
which
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is largest.

▶ (Notice that x now appears as a quadratic in the classifier, hence the name.)



QDA vs LDA

Why choose one over the other? The bias-variance trade-off!

▶ LDA requires estimating significantly fewer parameters.
▶ With p parameters, a covariance matrix requires estimating p(p + 1)/2 parameters.
▶ QDA requires estimating K covariance matrices, or Kp(p + 1)/2 parameters.
▶ For 50 predictors, this is some multiple of 1275!

▶ QDA is much more flexible (and so much more variable).
▶ LDA can therefore result in better prediction performance.

▶ LDA has strong assumptions about covariance matrix.
▶ Violated assumption can result in high bias.



QDA vs LDA

When should we choose one over the other?

In general,

▶ Use LDA when there are relatively few training observations (and so reducing
variance is important).

▶ Use QDA if the training set is very large, so that the variance is not a major
concern.

▶ Use QDA if the common covariance matrix assumption is clearly violated.



Example: Default (10,000 observations)

library(ISLR2)
data(Default)
set.seed(1)

train.ind <- sample(1:nrow(Default), floor(0.8*nrow(Default)), replace=F)
def.train <- Default[train.ind,]
def.test <- Default[-train.ind,]



Example: Default
require(MASS)

## Loading required package: MASS

##
## Attaching package: 'MASS'

## The following object is masked from 'package:ISLR2':
##
## Boston
mod1 <- qda(default ~ ., def.train)
predval <- predict(mod1, def.test)$class
actual <- def.test$default
mean(predval==actual)

## [1] 0.9715

Note: the corresponding LDA classifier had 0.9705



Example: Default Data Confusion Matrix

table(predval, actual)

## actual
## predval No Yes
## No 1929 56
## Yes 1 14

Marginally better than the corresponding LDA classifier.


