4.4.4 Naive Bayes

Dr. Lauren Perry

Recall: Bayes' theorem gives us the expression

$$p_k(x) = P(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

and we need to estimate π_1, \ldots, π_K and $f_1(x), \ldots, f_K(x)$.

Bayes Classifier

- ▶ In practice, estimating π_1, \ldots, π_K is fairly simple.
- Estimating $f_1(x), \ldots f_K(x)$ is relatively more involved.
 - We can simplify this with strong assumptions about the distribution, e.g., multivariate normal.
 - In this case, we need only to estimate the distributions parameters.
 - Naive Bayes' takes a different approach.

Naive Bayes

Assumption: within the kth class, the p predictors are independent.

Mathematically, this means we can write

$$f_k(x) = f_{k1}(x_1) \times f_{k2}(x_2) \times \cdots \times f_{kp}(x_p)$$

where f_{kj} is the density function of the *j*th predictor among observations in the *k*th class.

- Assuming independence means we only have to estimate the K marginal distributions.
- Without independence, we also need to consider the *joint* distributions, or associations between the different predictors.
 - This is OK for multivariate normal (Σ_k) , but can be very complex.

How strong is this assumption?

Not very strong compared to assuming all predictors are normal.

- Even when it's violated (and it usually is), it tends to give pretty good results.
 - Especially true when *n* is small relative to *p*.
 - We need a lot of data to estimate those joint distributions!
- ▶ Naive Bayes introduces a little bias, but reduces variance.

In practice, Naive Bayes works quite well.

Under this assumption,

$$P(Y = k | X = x) = \frac{\pi_k \times f_{k1}(x_1) \times f_{k2}(x_2) \times \cdots \times f_{kp}(x_p)}{\sum_{l=1}^K \pi_l \times f_{l1}(x_1) \times f_{l2}(x_2) \times \cdots \times f_{lp}(x_p)}$$

for $k = 1, \ldots K$.

Estimating f_{kj} : Parametric Approach

• Assume
$$X_j | Y = k \sim N(\mu_{jk}, \sigma_{jk}^2)$$
.

Like QDA, but the class-specific covariance matrices are diagonal.

• Assume some other specific distribution for $X_j | Y = k$.

Estimating *f*_{kj}: Nonparametric Approach

- Use a non-parametric estimate for f_{jk}.
 - Simple approach: construct histograms for the *j*th predictor in each class. Estimate f_{kj}(x_j) as the proportion of the training observations in the *k*th class that belong to the same histogram bin as x_j.
 - Can also use a kernel density estimator, which is essentially the smoothed version of the above.

Estimating f_{kj} Qualitative Predictors

- If X_j is qualitative, fond the proportion of training observations for the jth predictor corresponding to each class.
 - That is, if the *j*th predictor takes on the value 1 in 50 of 100 times it appears in the data, estimate

$$\hat{f}_{kj}(x_j) = 0.5$$
 if $x_j = 1$

```
library(ISLR2)
data(Default)
set.seed(1)
train.ind <- sample(1:nrow(Default), floor(0.8*nrow(Default)), replace=F)
def.train <- Default[train.ind,]
def.test <- Default[-train.ind,]</pre>
```

Example: Default

```
require(e1071)
```

```
## Loading required package: e1071
```

Warning: package 'e1071' was built under R version 4.3.3

```
mod1 <- naiveBayes(default ~ ., def.train)
predval <- predict(mod1, def.test)
actual <- def.test$default
mean(predval==actual)</pre>
```

[1] 0.972

Note: the corresponding LDA classifier had 0.9705

Example: Default Data Confusion Matrix

table(predval, actual)

##	actual		
##	predval	No	Yes
##	No	1926	52
##	Yes	4	18