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Count Data

So far, we’ve dealt only with qualitative and continuous quantitative response variables.

We may also need to work with discrete quantitative responses, or counts.



The Bikeshare Data

▶ Response: ‘bikers’, the number of hourly users of a bike sharing program in
Washington DC

▶ Predictors:
▶ mnth, month of the year
▶ hr, hour of the day (0 to 23)
▶ workingday, indicator for work days (0 if weekend or holiday)
▶ temp, temperature in Celsius
▶ weathersit, weather situation: clear; misty or cloudy; light rain/snow; heavy

rain/snow



Linear Regression?

Why don’t we want use linear regression on count data?

▶ The linear model
Y = Xβ + ϵ

always results in continuous response Y .
▶ Since ϵ is continuous, Y must also be continuous.

▶ Count data is nonnegative, but linear regression outcomes may not be.
▶ There may also be some data-specific issues that arise.

▶ Subsection 4.6.1 has specific examples.



The Poisson Distribution

Suppose a random variables Y takes on nonnegative integer values. If Y follows a
Poisson distribution, Y ∼ Poisson(λ), then

P(Y = k) = e−λλk

k! for k = 0, 1, 2, . . .

▶ λ > 0 is the expected values (mean) of Y
▶ . . . and the variance of Y .
▶ That is, λ = E(Y ) = Var(Y )

Since it takes on nonnegative integer values, this distribution is typically used to model
counts.



The Poisson Distribution

Example: Let Y denote the number of users of the bike sharing program (for a set hour
of the day, under specific weather conditions, and during a particular month).

If there are 5 users on average per hour under these conditions, we might let λ = 5 and

P(Y = k) = e−55k

k!

Then the probability of no users in an hour is

P(Y = 0) = e−550

0! = e−5 ≈ 0.007



Poisson Regression

We want that mean λ to be able to vary based on our predictor variables: λ(X ).

That is, we will consider λ as a function of the covariates X1. . . . , Xp:

log(λ(X1, . . . , Xp)) = β0 + β1X1 + · · · + βpXp

or
λ(X1, . . . , Xp) = exp (β0 + β1X1 + · · · + βpXp)

and β0, β1, . . . , βp are parameters to be estimated.

▶ Note: the log of λ(X ) is linear in X .
▶ This ensures that λ(X ) takes on only nonnegative values (and, by extension,

predictions will only take on nonnegative values).



Poisson Regression

To estimate the coefficients β0, β1, . . . , βp, we again use a maximum likelihood
approach.

Given n independent observations from the Poisson regression model, the likelihood
takes the form

l(β0, β1, . . . , βp) = Πn
i=1

(
e−λ(xi )λ(xi)yi

yi !

)
where λ(xi) = exp(β0 + β1xi1 + · · · + βpxip)

▶ We estimate the coefficients to maximize this likelihood (to make the observed data
as likely as possible).



Poisson Regression on the Bikeshare Data

data(Bikeshare)
contrasts(Bikeshare$hr) = contr.sum(24)
contrasts(Bikeshare$mnth) = contr.sum(12)
mod1 <- glm(bikers ~ workingday + temp + weathersit + hr + mnth,

data = Bikeshare, family = 'poisson')

Note: you will see the contrasts function in the lab for this chapter. It has to do with
the coding of those two variables.



Poisson Regression on the Bikeshare Data
summary(mod1)

##
## Call:
## glm(formula = bikers ~ workingday + temp + weathersit + hr +
## mnth, family = "poisson", data = Bikeshare)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.118245 0.006021 683.964 < 2e-16 ***
## workingday 0.014665 0.001955 7.502 6.27e-14 ***
## temp 0.785292 0.011475 68.434 < 2e-16 ***
## weathersitcloudy/misty -0.075231 0.002179 -34.528 < 2e-16 ***
## weathersitlight rain/snow -0.575800 0.004058 -141.905 < 2e-16 ***
## weathersitheavy rain/snow -0.926287 0.166782 -5.554 2.79e-08 ***
## hr1 -0.754386 0.007879 -95.744 < 2e-16 ***
## hr2 -1.225979 0.009953 -123.173 < 2e-16 ***
## hr3 -1.563147 0.011869 -131.702 < 2e-16 ***
## hr4 -2.198304 0.016424 -133.846 < 2e-16 ***
## hr5 -2.830484 0.022538 -125.586 < 2e-16 ***
## hr6 -1.814657 0.013464 -134.775 < 2e-16 ***
## hr7 -0.429888 0.006896 -62.341 < 2e-16 ***
## hr8 0.575181 0.004406 130.544 < 2e-16 ***
## hr9 1.076927 0.003563 302.220 < 2e-16 ***
## hr10 0.581769 0.004286 135.727 < 2e-16 ***
## hr11 0.336852 0.004720 71.372 < 2e-16 ***
## hr12 0.494121 0.004392 112.494 < 2e-16 ***
## hr13 0.679642 0.004069 167.040 < 2e-16 ***
## hr14 0.673565 0.004089 164.722 < 2e-16 ***
## hr15 0.624910 0.004178 149.570 < 2e-16 ***
## hr16 0.653763 0.004132 158.205 < 2e-16 ***
## hr17 0.874301 0.003784 231.040 < 2e-16 ***
## hr18 1.294635 0.003254 397.848 < 2e-16 ***
## hr19 1.212281 0.003321 365.084 < 2e-16 ***
## hr20 0.914022 0.003700 247.065 < 2e-16 ***
## hr21 0.616201 0.004191 147.045 < 2e-16 ***
## hr22 0.364181 0.004659 78.173 < 2e-16 ***
## hr23 0.117493 0.005225 22.488 < 2e-16 ***
## mnth1 -0.670170 0.005907 -113.445 < 2e-16 ***
## mnth2 -0.444124 0.004860 -91.379 < 2e-16 ***
## mnth3 -0.293733 0.004144 -70.886 < 2e-16 ***
## mnth4 0.021523 0.003125 6.888 5.66e-12 ***
## mnth5 0.240471 0.002916 82.462 < 2e-16 ***
## mnth6 0.223235 0.003554 62.818 < 2e-16 ***
## mnth7 0.103617 0.004125 25.121 < 2e-16 ***
## mnth8 0.151171 0.003662 41.281 < 2e-16 ***
## mnth9 0.233493 0.003102 75.281 < 2e-16 ***
## mnth10 0.267573 0.002785 96.091 < 2e-16 ***
## mnth11 0.150264 0.003180 47.248 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1052921 on 8644 degrees of freedom
## Residual deviance: 228041 on 8605 degrees of freedom
## AIC: 281159
##
## Number of Fisher Scoring iterations: 5



Poisson Regression on the Bikeshare Data
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Poisson vs Linear Regression: Interpretation

A one-unit increase in Xj is associated with a change in λ(X ) by a factor of exp(βj).

Example:

▶ The indicator for cloudy has β̂cloudy = −0.08.
▶ A change in weather from clear (baseline) to cloudy is associated with a change in

mean bike usage by a factor of exp(−0.08) = 0.923.
▶ That is, on average, 92.3% as many people will use bikes when it is cloudy relative to

when it is clear.



Poisson vs Linear Regression: Mean-Variance Relationship

Under the Poisson model, λ = E(Y ) = Var(Y ).

▶ This allows the variance to change with the mean.
▶ In the Bikeshare data, variability is a lot higher when more people are riding, for

example in good weather. This Poisson model accounts for this.
▶ However, this is also an assumption we make in the Poisson model that may not

always hold.



Generalized Linear Models

Discussed three types of regression models:

1. Linear
2. Logistic
3. Poisson

What do these have in common?



Generalized Linear Models

▶ Each approach uses predictors X1, . . . , Xp to predict some response Y .
▶ Assume that, Y |X1, . . . , Xp belongs to a certain family of distributions.

▶ Linear regression assumes normal.
▶ Logistic regression assumes Bernoulli.
▶ Poisson regression assumes Poisson.



Generalized Linear Models

▶ Each approach models Y as a function of the predictors X .
▶ Linear regression

E(Y |X1, . . . , Xp) = β0 + β1X1 + · · · + βpXp

▶ Logistic regression

E(Y |X1, . . . , Xp) = P(Y = 1|X1, . . . , Xp) = exp(β0 + β1X1 + · · · + βpXp)
1 + exp(β0 + β1X1 + · · · + βpXp)

▶ Poisson regression

E(Y |X1, . . . , Xp) = λ(X1, . . . , Xp) = exp(β0 + β1X1 + · · · + βpXp)



Link Functions

We can express all of these using a link function, η:

η(E(Y |X1, . . . , Xp)) = β0 + β1X1 + · · · + βpXp

▶ For linear regression, η(µ) = µ
▶ For logistic regression, η(µ) = log[µ/(1 − µ)]
▶ For Poisson regression, η(µ) = log(µ)



Exponential Family of Distributions

▶ The normal, Bernoulli, and Poisson distributions are all part of the exponential
family.

▶ Other well-known exponential family distributions:
▶ Exponential
▶ Gamma
▶ Negative binomial



Generalized Linear Models

In general, we can perform a regression by modeling Y as coming from any particular
member of the exponential family and then transforming the mean of the response so
that it is a linear function of the predictors.

Any regression model that follows this approach is a generalized linear model (GLM).


