
5.1 Cross-Validation

Dr. Lauren Perry



Test and Training Data

▶ In practice, we typically want to use all of our data to build our models.
▶ But if we do this directly, we only capture the training error rate, which may be

inflated due to overfitting.
▶ Cross-validation gives us an option for using all of our data to train the models and

getting a test error rate!

We will discuss the methods in this section using linear regression as an example.
However, they can be used on any of the models discussed in this book.



The Validation Set Approach

This is how we’ve been working with test and training data.

▶ Randomly divide the data into parts: training and test (validation).
▶ Build the model on the training set.
▶ Examine model fit using the test set.



The Validation Set Approach: Auto Data

train.ind <- sample(1:nrow(Auto), floor(0.8*nrow(Auto)))
auto.train <- Auto[train.ind, ]
auto.test <- Auto[-train.ind, ]
mod1 <- lm(mpg ~ poly(horsepower, 3), data=auto.train)

preds <- predict(mod1, auto.test)
mean((preds - auto.test$mpg)ˆ2)

## [1] 16.84336



The Validation Set Approach: Auto Data
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The Validation Set Approach

Problems:

1. Estimates of error rate can be highly variable depending on which observations are
included in the training set.

2. Only a subset of observations are used to train the model, which may result in
worse estimates.



Leave-One-Out Cross-Validation (LOOCV)

Cross-validation is similar to the validation set approach, but it addresses the problems
mentioned in the previous slide.

Idea:

▶ Hold one observation (x1, y1) back and train the model on the remaining n − 1
observations.

▶ Make a prediction ŷ1 for the excluded observation and find its mean squared error

MSE1 = (y1 − ŷ1)2

▶ Repeat the procedure n times in total, holding back a different observation each
time.



Leave-One-Out Cross-Validation (LOOCV)

▶ Then the LOOCV estimate for the test MSE is

CV(n) = 1
n

n∑
i=1

MSEi

▶ For least squares linear or polynomial regression, we can find CV(n) without having
to do extra work:

CV(n) = 1
n

n∑
i=1

(yi − ŷi
1 − hi

)2

▶ Here, hi is the leverage.
▶ Residuals for high-leverage points are inflated in such a way that this formula holds.



Leave-One-Out Cross-Validation (LOOCV)

Advantages:

▶ Far less bias than validation set approach.
▶ Less likely to overestimate test error rate.

▶ No variability from randomly selecting training data.

Disadvantages:

▶ Can be very expensive to implement.
▶ Model needs to be fit n times.



LOOCV: Auto Data

library(boot)
mod2 <- glm(mpg ~ poly(horsepower, 3), data=Auto)
cv.err <- cv.glm(Auto, mod2)
cv.err$delta

## [1] 19.33498 19.33448



LOOCV: Auto Data
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k-Fold Cross-Validation

This is an alternative to LOOCV.

▶ The data is divided into k groups, or folds, of approximately equal size.
▶ The first fold is treated as a test (validation) set and the method is fit on the

remaining k − 1 folds.
▶ The MSE is computed on the observations in the held-out fold.
▶ Repeat k times.

Then

CV(k) = 1
k

k∑
i=1

MSEi



k-Fold Cross-Validation

▶ LOOCV is a special case of k-fold cross-validation where k = n.
▶ In practice, we usually set k = 5 or k = 10.

▶ Computational advantage (fewer models to fit).
▶ Good balance for bias-variance trade-off.



k-Fold Cross-Validation
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RHS: nine different 1-fold CV estimates for the Auto data set. Notice that there is some
variability, but it’s not substantial.
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True test MSE shown in blue (simulated data). LOOCV estimates shown as black
dashed curve. Orange curve shows 10-fold CV.

In some cases, we may only be interested in the location of the minimum point in the
estimated MSE curve (for choosing a model or method).



Advantages of k-Fold Cross Validation: Bias-Variance Trade-Off

Bias:

▶ Validation set approach can lead to overestimates of test error rate (uses only part
of data).

▶ LOOCV gives approximately unbiased estimates of test error (uses almost all of
data).

▶ 5- or 10-fold cross-validation has some intermediate amount of bias.



Advantages of k-Fold Cross Validation: Bias-Variance Trade-Off

Variance

▶ LOOCV has a higher variance than k-fold CV with k < n.
▶ Each LOOCV model fit is trained on almost all of the data.

▶ Therefore its outputs are highly correlated with each other.
▶ In contrast, 5- or 10-fold CV results in models that are less correlated with each

other (overlap between training sets is smaller).
▶ The mean of many highly correlated quantities will have higher variance than the

mean of many quantities that are not so highly correlated.
▶ Thus the test error estimate for LOOCV tends to have higher variance than that of 5-

or 10-fold CV.



Cross-Validation for Classification Problems

Now, instead of examining MSE, we examine the number of misclassified observations.

For LOOCV, this looks like

CV(n) = 1
n

n∑
i=1

Erri

where Erri = I(yi ̸= ŷi)



LOOCV: Default Data

library(boot)
mod3 <- glm(default ~ ., data=Default, family="binomial")
cv.err <- cv.glm(Default, mod3, K=10)
cv.err$delta # error rate

## [1] 0.02140122 0.02139571


