
Bootstrap

Slides borrowed from Dr. James Flegal



Plug-In and the Bootstrap

▶ The worst mistake one can make in statistics is to confuse the sample and the
population or to confuse estimators and parameters.

▶ That is, θ̂ is not θ.
▶ Plug-in principle seems to say the opposite

▶ Sometimes it is okay to just plug in an estimate for an unknown parameter.
▶ We do this, for example, when plugging in s for σ when doing a t-test.

▶ So it may not be a mistake to ignore the difference between a nuisance parameter
and an estimator for it.



Plug-In and the Bootstrap

▶ The bootstrap is a cute name for a vast generalization of the plug-in principle.
▶ The bootstrap comes in two flavors, parametric and nonparametric.
▶ Theory of the nonparametric bootstrap is all above the level of this course, so we

give a non-theoretical explanation.
▶ The nonparametric bootstrap, considered non-theoretically, is just an analogy.



Nonparametric Bootstrap

World Real Bootstrap

true distribution F F̂n
data X1, . . . , Xn IID F X ∗

1 , . . . , X ∗
n IID F̂n

empirical
distribution

F̂n F ∗
n

parameter θ = t(F ) θ̂n = t(F̂n)
estimator θ̂n = t(F̂n) θ∗

n = t(F ∗
n )

error θ̂n − θ θ∗
n − θ̂n

standardized error θ̂n−θ
s(F̂n)

θ∗
n −θ̂n

s(F ∗
n )

Notation θ = t(F ) means θ is some function of the true unknown distribution.



Nonparametric Bootstrap

▶ The notation X ∗
1 , . . . , X ∗

n IID F̂n means X ∗
1 , . . . , X ∗

n are independent and
identically distributed from the empirical distribution of the real data

▶ Sampling from the empirical distribution is just like sampling from a finite
population, where the population is the real data X1, . . . , Xn - To be IID sampling
must be with replacement

▶ X ∗
1 , . . . , X ∗

n are a sample with replacement from X1, . . . , Xn - Called resampling



Nonparametric Bootstrap

▶ We want to know the sampling distribution of θ̂n or θ̂n − θ or θ̂n−θ
s(F̂n) - This

sampling distribution depends on the true unknown distribution F of the real data
▶ May be very difficult or impossible to calculate theoretically
▶ Even asymptotic approximation may be difficult, if the parameter θ = t(F ) is a

sufficiently complicated function of the true unknown F - The statistical theory
we have covered is quite amazing in what it does, but there is a lot it doesn’t do



Nonparametric Bootstrap

▶ In the bootstrap world everything is known, F̂n plays the role of the true unknown
distribution and θ̂n plays the role of the true unknown parameter value

▶ The sampling distribution of θ∗
n or θ∗

n − θ̂n or θ∗
n −θ̂n

s(F ∗
n ) may still be difficult to

calculate theoretically, but it can always be calculated by simulation.



Nonparametric Bootstrap

▶ Much folklore about the bootstrap is misleading
▶ The bootstrap is large sample, approximate, asymptotic

▶ It is not an exact method
▶ The bootstrap analogy works when the empirical distribution F̂n is close to the

true unknown distribution F
▶ Usually the case when the sample size n is large and not otherwise



Bootstrap Percentile Intervals

▶ Simplest method of making confidence intervals for the unknown parameter is to
take α/2 and 1 − α/2 quantiles of the bootstrap distribution of the estimator θ∗

n
as endpoints of the 100(1 − α)% confidence interval

▶ Percentile method only makes sense when there is a symmetrizing transformation
(some function of θ̂ has an approximately symmetric distribution with the center
of symmetry being the true unknown parameter value θ)

▶ The symmetrizing transformation does not have to be known, but it does have to
exist



Parametric Bootstrap

▶ The parametric bootstrap is just like the nonparametric bootstrap except for one
difference in the analogy

▶ We use a parametric model Fθ̂n
rather than the empirical distribution F̂n as the

analog of the true unknown distribution in the bootstrap world



Parametric Bootstrap

World Real Bootstrap

parameter θ θ̂n
true distribution Fθ Fθ̂n
data X1, . . . , Xn IID Fθ X ∗

1 , . . . , X ∗
n IID Fθ̂n

estimator θ̂n = t(X1, . . . , Xn) θ∗
n = t(X ∗

1 , . . . , X ∗
n )

error θ̂n − θ θ∗
n − θ̂n

standardized error θ̂n−θ
s(X1,...,Xn)

θ∗
n −θ̂n

s(X∗
1 ,...,X∗

n )



Parametric Bootstrap

▶ Simulation from the parametric model Fθ̂n
not analogous to finite population

sampling and does not resample the data like the nonparametric bootstrap does
▶ Instead we simulate the parametric model
▶ May be easy (when R has a function to provide such random simulations) or

difficult



Nonparametric versus Parametric

▶ The nonparametric bootstrap is nonparametric. That means it always does the
right thing, except when it doesn’t. It doesn’t work when the sample size is too
small or when the square root law doesn’t hold or when the data are not IID or
when various technical issues arise that are beyond the scope of this course – the
parameter is not a nice enough function of the true unknown distribution.
▶ The parametric bootstrap is parametric. That means it is always wrong when the

model is wrong. On the other hand, when the parametric bootstrap does the right
thing (when the statistical model is correct), it does a much better job at smaller
sample sizes than the nonparametric bootstrap.



Nonparametric versus Parametric

▶ When the parameter θ is defined in terms of the parametric statistical model and
can only be estimated using the parametric model (by maximum likelihood
perhaps), the statistical model is needs to be correct for the parameter estimate
θ̂n to make sense

▶ Since we already need the statistical model to be correct, the parametric
bootstrap is the logical choice



Abnormal speed of light data

▶ Thanks to Rob Gould (UCLA Statistics) for the following example
▶ In 1882 Simon Newcomb performed an experiment to measure the speed of light
▶ Measured time it took for light to travel from Fort Myer on the west bank of the

Potomac River to a fixed mirror at the foot of the Washington monument 3721
meters away

▶ In the units of the data, the currently accepted “true” speed of light is 33.02
▶ Does the data support the current accepted speed of 33.02?
▶ To convert these units to time in the millionths of a second, multiply by 10−3 and

add 24.8



Abnormal speed of light data
Histogram of speed
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Abnormal speed of light data

▶ A t-test assumes the population of measurements is normally distributed
▶ With this small sample size and a severe departure from normality, we can’t be

guaranteed a good approximation
▶ Instead, we can consider the bootstrap



Abnormal speed of light data

1. State null and alternative hypotheses

H0 : µ = 33.02 versus Ha : µ ̸= 33.02

2. Choose a significance level, in our case 0.05
3. Choose a test statistic, since we wish to estimate the mean speed we can use the

sample average
4. Find the observed value of the test statistic
5. Calculate a p-value?

## [1] 21.75



Abnormal speed of light data

▶ We now need a p-value, but we don’t have the sampling distribution of our test
statistic when the null hypothesis is true
▶ It is approximately normal, but that is a poor approximation here
▶ Instead we can perform a simulation under conditions in which we know the null

hypothesis is true
▶ Use our data to represent the population, but first we shift it over so that the mean

really is 33.02
▶ Histogram of newspeed will have exactly the same shape as speed, but will be

shifted



Abnormal speed of light data

▶ Now we reach into our fake population and take out 20 observations at random,
with replacement

▶ We take out 20 because that’s the size of our initial sample
▶ We calculate the average and save it, then repeat this process many, many times
▶ Now we have a sampling distribution with mean 33.02
▶ Can compare this to our observed sample average and obtain a p-value



Bootstrap Sampling Distribution

Bootstrap Samples
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▶ Doesn’t look normal, which means we did the right thing
▶ Not impossible for the sample average to be 21.75
▶ But it’s not all that common, either



Abnormal speed of light data

▶ The p-value is the probability of getting something more extreme than what we
observed

▶ Notice 21.75 is 33.02 − 21.75 = 11.27 units away from the null hypothesis
▶ So p-value is the probability of being more than 11.27 units away from 33.02

## [1] 0.006

▶ Since our significance level is 5%, we reject H0 and conclude that Newcomb’s
measurements were not consistent with the currently accepted figure



Example: Sleep study

▶ The two sample t-test checks for differences in means according to a known null
distribution

▶ Similar to permutation tests
▶ Let’s resample and generate the sampling distribution under the bootstrap

assumption



Example: Sleep study
Bootstrap Sampling Distribution
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Bootstrapping functions

▶ R has numerous built in bootstrapping functions, too many to mention, see boot
library

▶ Example of the function boot
▶ Bootstrap of the ratio of means using the city data included in the boot

package



Bootstrapping functions

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = city, statistic = ratio, R = 1000, stype = "w")
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 1.520313 0.0440328 0.2253281



Bootstrapping functions

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = results, type = "bca")
##
## Intervals :
## Level BCa
## 95% ( 1.251, 2.176 )
## Calculations and Intervals on Original Scale



Bootstrapping a single statistic

▶ Can use the bootstrap to generate a 95% confidence interval for R-squared
▶ Linear regression of miles per gallon (mpg) on car weight (wt) and displacement

(disp)
▶ Data source is mtcars
▶ The bootstrapped confidence interval is based on 1000 replications



Bootstrapping a single statistic

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = mtcars, statistic = rsq, R = 1000, formula = mpg ~
## wt + disp)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 0.7809306 0.009787557 0.04798515



Bootstrapping a single statistic

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = results, type = "bca")
##
## Intervals :
## Level BCa
## 95% ( 0.6593, 0.8578 )
## Calculations and Intervals on Original Scale
## Some BCa intervals may be unstable



Bootstrapping a single statistic
Histogram of t
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Summary

▶ Bootstrapping provides a nonparametric approach to statistical inference when
distributional assumptions may not be met

▶ Enables calculation of standard errors and confidence intervals in a variety of
situations, e.g. medians, correlation coefficients, regression parameters, . . .

▶ Hypothesis tests are a little more challenging
▶ The bootstrap is large sample, approximate, and asymptotic!
▶ Works when the empirical distribution F̂n is close to the true unknown distribution

F
▶ Usually the case when the sample size n is large and not otherwise, no method

can save bad data!


